#zass17的心得報告:#放下成見 放過頭的《#尚氣與十環傳奇》(微雷)
先講我最喜歡的橋段,看完電影,跟我朋友在去停車場的電梯講到這片的總結「總而言之,這片其實就是華人的瓦干達啦」然後電梯一角就這麼巧有個黑人,尷尬又不失禮貌,嘶嘶笑著回 「我還蠻Enjoy這片的啦」
推薦指數:⭕️⭕️⭕️⭕️⭕️⭕️⭕️,七個環
《尚氣》的劇情,武打,角色,彩蛋解析評論相信 FB/YT大家都看已經看得七七八八,所以我把我喜歡的部分簡單帶過:
梁朝偉眉一挑我就濕了
十環(Rings)不是漫畫中十戒指改編,讚,耍起來簡單粗暴,霸氣度破表
武打流利讚 (前半,悼念Brad Allen)
音樂很燃 (前半,Rich Brian FTW!)
神獸萌 (還記得2019年我們的山海經贈書活動嗎? 超前部屬啦!)
思慕演出的形象雖然不是亞洲人的菜,但我覺得很可愛,沒毛病
還好Awkwafina 不是 100% 丑角
張夢兒演出的夏靈,OK狠
法拉 紫瓊姊姊水準演出
以尚,是我 #放下成見 的部分
接夏來,是我覺得作為起源故事並未超越 #黑豹 的原因
1⃣️ 就是所有 #放下成見 的宣傳,我知道這片從選角上就已經有了爭議。到了放出第一支預告後,分歧更加巨大化。中國早就覺得乳華不說,連台灣觀眾都覺得主角長的太像某大大。兩岸都不討好的反饋,讓迪士尼不得不執行別於以往的宣傳風格。開始廣發邀看,網路也開始不斷放送各種片段。甚至連某神秘客串都在這波宣傳下曝光了。這樣的操作,把大家的期望值拉高後......
2️⃣ 本片前後反差過大,後,主要是指收尾
(前)文武大江大海的四處征戰 (後)只派的出幾台車的村莊級械鬥
(前)新奇的都市武俠風 (後)老漫威風格的公式化神獸大亂鬥
(前)屢有致敬特定族群的鏡頭 (後)回到美國觀眾比較熟悉的場景跟結局
等。
當然,漫威想必很難將賴以成功的電影公式及集團特有的「結局大亂鬥製作團隊」棄之不用。但這片我覺得可以更著重於尚氣跟文武之間父子情仇的了結,而非一定要與漫威宇宙觀的什麼大事件或是新世界做推進。畢竟這是起源故事咩
3⃣️ Awkwafina還是有些許的突兀。導演有稍微控制Awkwafina的搞笑功能,而非濫用她,這點我持肯定的態度。但是劇情推進上,Awkwafina有必要整片都黏在尚氣旁邊嗎? 而到最後,想必大家都猜到她在大亂鬥中會發揮什麼功能了。然後! 最後的彩蛋環節中竟然也有她? 除非凱蒂是原作中之後還很重要的角色,我覺得有些太多了。
4⃣️ 那個神秘的客串嘉賓突然出現,突然變成整片大推進的關鍵,這應該也算是公式了吧?但是因為帝江Morris太可愛了,只好給過。
所以《尚氣》我給七個環,夠資格的起源故事,感受的到團隊滿滿的野心,但是最後收尾稍微急就章的作品。當然推薦看,注意防疫安全喔~
#shangchi
同時也有467部Youtube影片,追蹤數超過3萬的網紅李祥數學,堪稱一絕,也在其Youtube影片中提到,線上課程賣場:https://changhsumath.1shop.tw/ewkhca 成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join 追蹤我的ig:https://www.instagra...
「指數微分公式」的推薦目錄:
- 關於指數微分公式 在 Facebook 的最佳解答
- 關於指數微分公式 在 Facebook 的最讚貼文
- 關於指數微分公式 在 數學老師張旭 Facebook 的精選貼文
- 關於指數微分公式 在 李祥數學,堪稱一絕 Youtube 的最佳貼文
- 關於指數微分公式 在 李祥數學,堪稱一絕 Youtube 的最讚貼文
- 關於指數微分公式 在 李祥數學,堪稱一絕 Youtube 的最讚貼文
- 關於指數微分公式 在 [佛腳] 微積分之微分的基本- 精華區AU_Talk 的評價
- 關於指數微分公式 在 指數微分公式2023-精選在臉書/Facebook/Dcard上的焦點新聞 ... 的評價
- 關於指數微分公式 在 指數微分公式2023-精選在臉書/Facebook/Dcard上的焦點新聞 ... 的評價
- 關於指數微分公式 在 Calculus - 指對數| WillyWangkaa 的評價
指數微分公式 在 Facebook 的最讚貼文
九月開學季,我梳理了給孩子們在課内學習、課外學習共七點建議。祝廣大學子們充分開展更多元的學習範式,提升自我的創新創造力!
我在《李開復給青少年的十二封信》書裏,也談過人工智能時代的教育,我覺得很適合在現在這個開學季再次分享給大家。比起應試考試中的分數,如果同學們具備“3C”的三大能力—— Curiosity(好奇心)、Critical thinking(批判式思維)、Creativity(創造力),未來更有可能實現自己的夢想。
■ 課內學習的4個建議:要充分利用好在學校裏上課的時間。
1. 要知其然,也要知其所以然
有同學問我:“怎樣學習知識,才能真正記住呢?每年考完試後,好像就把所有的知識還給老師了。”
我給這位同學的回答是:“我學懂的知識以及知道如何實踐的知識,我現在都還記得;在工作中常用的知識,我全部記得;我自己感興趣的知識,記憶更加清晰、準確,就算有不記得的,也可以快速推算出來;相反,那些靠死記硬背學到的知識,或者自己不感興趣的知識,我已經全忘掉了。”
也就是說,死記硬背只能過考試關,而不能獲取受益終生的知識。你們在學三角形面積定理時,一定都會背“底乘以高除以二”的公式。但是,你有沒有理解這個公式是如何推理出來的,為什麼三角形的面積是這樣計算的。記住這個公式和探索這個公式是如何推導出來的,學習的效果是不一樣的。有的同學學習化學,如果每天只是機械地背誦一些反應式,肯定會覺得枯燥無味,但如果掌握了每個反應式內在的規律,並能和現實中的化學現象聯繫起來,就會理解化學這門學科的意義所在,自然就會對這門學科產生興趣。
只有懂得了知識背後的道理,才能在遇到新的問題時舉一反三,才能在需要的時候,靈活地將自己掌握的知識付諸實踐。
2. 要多問問題
會提問也是一種能力,而且你也會因為提問而加深對問題的理解。
我的女兒在學習指數的時候,不理解指數是什麼,更不相信在真實生活中指數有什麼用處,就主動來問我。我用計算銀行存款的思路來指導她,比如存入 100 元,每年的利息是 10%,那麼 10 年後,你的存款是多少?
通過這樣的計算,她終於明白了,原來指數知識和日常生活息息相關。而她能得到對這個問題的認識,也是因為她主動提問獲得的。
多提一個問題,你就擁有一種多瞭解這個世界的可能性。只有不懂就問,才能真正學到有用的知識。
3. 要勤奮
能夠實現自己的夢想的人,一定是勤奮的。
去美國讀中學之前,我只學過半年英語,因此,語言障礙成為我面臨的最大難關。剛開始,同學和老師說的話,我幾乎一句也聽不懂,那種感覺非常痛苦。那“催眠”一般的語速,總讓我在課堂上打起瞌睡。有時候,聽到同學們因為老師的一句笑話笑得前仰後合,我才從夢中驚醒,但還是摸不著頭腦。天書一般的英文,開始讓我有些望而卻步,後來,我乾脆帶幾本中文的武俠小說到課上去讀,因為覺得怎麼聽也聽不懂,還不如看小說。
然而,我心裏又是暗暗憋了一股勁的。於是,我找了一大本英文單詞書來背,經常背到半夜,不會的就一次次地翻厚厚的中英對照詞典。不過,沒多久,我就發現這並不是學英文的最好方法。因為,即使當時記住了一個單詞,但是使用率不高的話,就會完全忘記。我終於悟到了,在沒有語境的情況下,背單詞是沒用的。
後來,我還是下定決心用多交流的方式來學習英文。下了課,我不再膽怯,站在同學中間聽他們說話。如果 5個詞當中有 4個聽懂了,只有一個聽不懂,我也會趕緊問,同學們會再用英文解釋一遍給我聽。回家以後,我會默默回憶我聽不懂的單詞,然後記下來。而上課的時候,遇到聽不懂的內容,我也勇敢舉手問老師,請求老師再說一遍。
我遇到了一位好老師,她甚至犧牲自己的午飯時間幫我一對一地補習英文,她複印了小學一年級的課文,每天拿來給我念。從簡單的課文起步,我們堅持了一年。在這一年裏,我的英文水平迅速提高。學校裏所有的老師還允許我享受“開卷考試”的特殊待遇,她們讓我把試卷帶回家,並且告訴我題目裏不認識的單詞可以查字典,但是不能看書找答案。我每次回到家都嚴格按照老師說的做,遇到題目裏不認識的單詞就去查字典,但是從來沒有去翻書找過答案。因為,我覺得這是老師給我的最大信任,我不能辜負這份信任。
通過種種渠道的學習,我的英文終於逐漸接近同齡人的水平了。一年以後,我完全可以聽懂老師講的話了,英文會話也沒有問題了。到了初中三年級,也就是到美國兩年之後,我寫的作文居然獲得了田納西州的前十名。我想,這和我年齡小,容易接受新的語言不無關係,但也和我勤奮的學習有關。
4. 要培養獨立思考的能力
我在人生的各個階段,都獲益於獨立思考的能力。甚至想不到的是,這種批判式的獨立思考的能力,“救”了我的命。
在我五十二歲生日前不久,我在一次體檢中被查出肚子裏有數十顆“腫瘤”,經過反復復查,我被醫生宣判得了第四期淋巴癌。在毫無防備的情況下,我突然感受到死神和自己離得那麼近;我氣餒、懊悔、內疚,但是,治療過程中的一件具有轉折意義的事件發生了。
我遇到了一個好醫生。我的主治醫生唐季祿給我打氣:“淋巴癌第四期真的沒那麼嚴重,它跟肝癌、肺癌第四期是不太一樣的。”他告訴我,網絡上有兩篇專門討論“濾泡性淋巴癌存活率的預估方式”的論文,如果我有興趣,可以找出來看看。我認真地研究了唐醫生推薦的那些學術文章,發現淋巴癌的分期方式已經有四十多年了,可以說過時且不精准了。如果說只看標準的分類,我因為腫瘤數太多,所以必須歸類為第四期。但是只看腫瘤數量是最準確的嗎?根據我研究的那幾篇論文,分期的目的就是預測存活概率和時間。那麼,最準確的預測方法就是尋找和我病情足夠相似的人,根據他們的不同因素,如年齡、症狀、血液指數、腫瘤數量及大小等 20多種,和他們的實際存活結局來理解哪些因素是最重要的,並且把這些因素整合起來。這樣的研究肯定要比四十多年前的粗分類來得准!
自己研究病情,就像是自己坐在副駕駛座上,可以隨時掌握路況。醫生的治病策略、用藥思維,你至少並不是茫然無知。我又拿出以前做學術的精神,把全部20幾個特徵與我的檢查結果相對照,發現我雖然屬於第四期,但整體狀況其實沒那麼悲觀。原來醫學上對所有淋巴癌的分期方式,至少對我的病情來說是不正確的,我的情況是較輕的。於是,我突然從“第四期癌症頂多幾個月”,變成“至少還有好幾年”可以活。倘若好好照顧自己,更有可能終身不再復發!這個發現有如一線曙光,從此之後,癌症所帶來的一切負面影響,就開始悄悄起了變化。
批判性地看待醫學上對淋巴癌的分類,通過獨立思考,獨立研究的方式來獲得對自己病情的準確判斷,讓我自己從精神上獲得了新生。
■ 課外學習的3個建議:課堂外的時間,我鼓勵同學們,去探索你們熱愛的東西,多實踐,多多鍛煉自己的創造力。
5. 要動手實踐
美國華盛頓兒童博物館的牆上寫了這樣一句格言:“我聽到的會忘掉,我看到的能記住,我做過的才真正明白。”
我記得小時候,我的父親曾讓我們幾個兄弟姐妹解答這樣一個問題:用 6 根火柴拼成 4 個大小一模一樣的正三角形。通過動手實踐,我們都找到了正確的答案。這樣的實踐讓我對相關的幾何和空間知識記憶深刻,也訓練了我使用新穎的思維解決問題的能力。
我在高中時參與美國的高中生創業嘗試課程,創辦自己的公司。我們當時的公司非常簡單,就是從當地的建材市場買來鋼材,然後利用週末時間到工廠裏加工這些鋼材,我們把鋼材切成很小的一塊塊圓環,然後在圓環上刻上簡單的雕花。在負責推廣的過程中,我們發現學生的家長並不需要這樣的圓環,最後產品幾乎是內部消化掉了。
這次的親身實踐,讓當時 15 歲的我意識到,真正好的產品,不是求人去買的,而是必須有市場需求。有了這樣的認識,我在第二次的創業嘗試中就會把市場需求作為我創辦的公司的方向。從需求出發,生產有需求的產品,牢記這樣的理念,第二次的創業嘗試獲得了成功。這些對於創辦公司的經驗,都是我從實踐中一點一滴積累起來的。
只有實踐,你才能知道你的想法是否可行。
6. 要追隨自己的興趣愛好
只有做自己真正喜歡做的事情,才能做到最好。
我在上大學時,一直以為自己喜歡法律,將來想做一名律師。可是上了幾門課後,我發現自己對此毫無興趣,於是跟家人商量轉系,數學是我的一個備選項。但是,當我加入了“數學天才班”後,發現我的數學突然從“最好的”變成“最差的”。我雖是田納西州的冠軍,但當我與來自加州或紐約的“數學天才”交手時,才發現自己真的技不如人。我深深地體會到那些數學天才是因為“數學之美”而對它癡迷的,而我並非如此。我一方面羡慕他們找到了最愛,一方面遺憾自己並不是真的數學天才,也不會為了它的美而癡迷,因為我不希望我的人生意義就是為了理解數學之美。
我想到了計算機,我在高中時就對計算機有濃厚的興趣,有一次,為了解答一個複雜的數學方程式,我寫了一個程式,然後把結果打印出來。當時因為機器運行的速度太慢,我沒有等到結果打印出來就回去了。週一回到學校,我才知道我們學校所有的打印紙都被我打光了。雖然挨了老師一通罵,但我的心裏有了一股欣喜,原來這個數學方程式有無數的解,我走後,程式一直在運行,計算機就一直在打印結果。
對計算機的興趣此時在我的心中醞釀,雖然當時計算機專業算是個默默無聞的專業。接下來,我選修了一門計算機編程課,幾個月的課上下來,我發現了自己在計算機方面的天賦。我和同學們一起做編程,他們還在畫流程圖,我就已經完成了所有的題目。考試的時候,我比別人交卷的時間幾乎早了一半,我不用特別準備,也能拿高分。
通過學習計算機 , 我有了一種前所未有的震撼:未來這種技術能夠思考嗎?它能夠讓人類更有效率嗎?計算機有一天會取代人腦嗎?我感受到了一種振奮,解決這樣的問題是我一生的意義所在。
我每天都像海綿一樣吸收著知識,在一門公認為是計算機專業最難通過的“可計算性和形式語言”課上,我考了 100 分,也就是A+ 的分數,創造了該系的一個紀錄。大三大四時我就開始和研究生一起選修碩士和博士課程,接手各式各樣的項目,在這些項目中,我嘗試著攻克一個又一個的難關。畢業後,我在計算機方面創造出了一些成果。
我覺得自己是幸運的,因為我在很年輕的時候,就找到了自己熱愛的事情,並且願意為之付出一生的努力。
7. 要多培養自己的創造力
我的中學是在美國的橡樹嶺讀的,當時的感受就是,學校的功課很輕鬆,每天的家庭作業很少,但是每天有很多稀奇古怪的項目。比如,當時歷史課教到美國印第安人的時候,不是用課本告訴你發生了什麼,而是讓一個團隊寫一個話劇,或者是進行關於移民者和印第安人的辯論。
這些項目都沒有一個標準的答案,但會引導我們從不同的角度看問題,但我們的創造力和想像力,可以在這些稀奇古怪的題目中得到鍛煉。
後來,我回到北京創辦微軟中國研究院面試時,對前來面試的學生也注重的是對他們思維方式的考驗,我們向面試者提出了這樣的問題:
o 為什麼下水道的蓋子是圓形的?
o 估計一下北京一共有多少個加油站。
o 你和你的導師如果發生分歧怎麼辦?
o 給你一個非常困難的問題,你想怎樣去解決它?
o 兩條不規則的繩子,每條繩子的燃燒時間為 1小時,請在 45分鐘燒完兩條繩子。
這些題目雖然聽上去很“怪”,但我們出題的本質也不一定要聽到正確答案,而是要從回答問題的思路中聽到面試者的思維方法。
孩子們,比起試卷上的分數,我認為你們底層的思維能力,會是更珍貴的能力。你在學習每一門科目時,鍛煉出來的能力是未來最能幫助你們的事情。就像你學了代數,也許不會去研究數學,但是這對鍛煉你的思維有幫助;你學了英文,不一定會出國,但是英文可以在瞭解世界最前沿的文獻、在有效交流方面幫助你;你學了畫畫,不一定成為畫家,但是你在學習畫畫的過程中鍛煉的觀察力、空間力、想像力會對你有幫助。
過去,我們對教育成功的衡量標準是學生能不能記得被教的東西。但是未來,教育的精華體現在即使你忘記了所有你學的東西,你還具備思維方式、智慧和能力。
當你已經忘記了歷史事件發生的年代,你還是知道歷史帶給我們的人類的智慧和教訓;當你已經不會編程了,你還是有編程帶給你的邏輯思維;當你已經不會背莎士比亞的詩了,你依然懂得文學的美,這些才是教育的精華。
指數微分公式 在 數學老師張旭 Facebook 的精選貼文
【指數函數的微分?高中微積分沒有教的主題】
.
a^x 的微分
高中微積分沒有教
但大學必考
且可用來研究人口增長
.
a^x 微分得 (a^x)ln(a)
這個結論一定要背!!
特別是考前!!
.
【口訣】
⭐ 指數函數微分 = 本身 × ln(底數)
.
其中 ln(x) 是以 e 為底的對數函數
就像 log(x) 表以 10 為底的對數函數
.
而 “e” 這個數字叫做自然對數
其值約 2.71,是無理數
.
關於 “e” 的來源
可以看我頻道影片
👉 導數與微分的概念(補充教材)
.
而若以 “e” 為底的指數函數微分的話
就會因 ln(e) = 1 而是微分等於自己
.
【公式整合】
1️⃣ 指數函數微分 = 本身 × ln(底數)
2️⃣ e^x 微分 = e^x
.
上面這兩個公式超重要
但其實只要背一個
知道是哪個嗎?
留言告訴我唄~
.
#數學老師張旭
#張旭微積分
#微積分 #數學 #數學補習 #讀書
指數微分公式 在 李祥數學,堪稱一絕 Youtube 的最佳貼文
線上課程賣場:https://changhsumath.1shop.tw/ewkhca
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg
指數微分公式 在 李祥數學,堪稱一絕 Youtube 的最讚貼文
線上課程賣場:https://changhsumath.1shop.tw/ewkhca
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg
指數微分公式 在 李祥數學,堪稱一絕 Youtube 的最讚貼文
線上課程賣場:https://changhsumath.1shop.tw/ewkhca
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg
指數微分公式 在 指數微分公式2023-精選在臉書/Facebook/Dcard上的焦點新聞 ... 的推薦與評價
指數微分公式 2023-精選在臉書/Facebook/Dcard上的焦點新聞和熱門話題資訊,找指數微分公式在Facebook上2023年該注意什麼?就上年度社群熱搜話題焦點 ... ... <看更多>
指數微分公式 在 指數微分公式2023-精選在臉書/Facebook/Dcard上的焦點新聞 ... 的推薦與評價
指數微分公式 2023-精選在臉書/Facebook/Dcard上的焦點新聞和熱門話題資訊,找指數微分公式在Facebook上2023年該注意什麼?就上年度社群熱搜話題焦點 ... ... <看更多>
指數微分公式 在 [佛腳] 微積分之微分的基本- 精華區AU_Talk 的推薦與評價
微積分考前速記
注意,本PO針對對微積分一竅不通、鴨子聽雷者。
所有的重點著重考試的計算。
所以裡面沒有申論題或證明題,不可能會討論微積分基本定理這些題目。
或許會有些人覺得很簡單,
但我也是到大二(還是微積分莫名PASS後)才……往事就讓它過去吧~
希望對大一學弟妹們的期中有幫助~
因為bbs上無法用太複雜的符號,會儘量附加中譯說明。 ps:次方 = ^。
盡量拿紙筆寫下才不會被符號搞混^^
--
(一)微分
f(x)= a(x^n) 中譯:a乘以x的n次方
f'(x)= an[x^(n-1)] 中譯:a乘以n(原次方移下)乘以x的n-1次方
ex:
f(x)= 3(x^4)
f'(x)= 3*4*(x^3)= 12(x^3)
(二)常數的微分 ╭────────╮
│ 兩者合體 │
f(x)= C(表示常數) │ │
│ f(x)= 2(x^3)+5 │
f'(x)= 0 │ f'(x)= 6(x^2) │
╰────────╯
ex: 基本中的基本,希望有好一點的老師
f(x)= 3 能配個40分在這裡(做夢吧~)
f'(x)= 0
--
(三)對數的微分
f(x)= ㏑[g(x)] 中譯:g(x)函數取自然對數,g(x)可以是x的任何形式。
g'(x)
f'(x)= ───── 訣竅:分母是原封不動的原函數,分子為原函數的微分。
g(x)
╭──────────╮
ex: │㏑(a*b)= ㏑a+ ㏑b │
f(x)= ㏑[3(x^2)+4] │㏑(a/b)= ㏑a- ㏑b │
│㏑1= 0 │
6x ← 3(x^2)+4 的微分 │㏑(x^n)= n*㏑x │
f'(x)= ─────── ╰──────────╯
3(x^2)+4 (原來的) ↑對數的"次方項"能往前搬喔~
--
(四)指數的微分
f(x)= e^g(x) 中譯:e的g(x)次方
f'(x)= e^g(x)*g'(x) 中譯:e的g(x)次方乘以g(x)的微分
訣竅:原來指數函數完整不動乘以指數次方項的微分
ex:
f(x)= e^(3x+2)
f'(x)= e^(3x+2)*3= 3*e^(3x+2)
因為怕太亂不敢用太複雜的數字,
基本上只要按照訣竅走就沒錯了。
--
(五)鏈鎖律 chain-rule
重點!以後不管看到什麼函數形式都得記住!!
一定得由外往內一層層微分,這樣才不會亂掉!
f(x)= [g(x)]^n
f'(x)= n* {[g(x)]^n-1} * g'(x) ←3.最後再乘以裡面函數的微分
↑  ̄ ̄ ̄ ̄ ̄↑
1.n在最外頭, 2.裡頭函數不變,
次方往前乘。 次方項減一。
訣竅:就像剝橘子一樣,一定要由外往內,在處理外面次方項時,千萬不要動裡面函數。
--
ex:
f(x)= 1/√[2(x^3)+3x] 中譯:分子是1,分母是2乘以x的3次方加上3x。
先稍作整理變成
f(x)= [2(x^3)+3x]^(-1/2) 中譯:開根號是1/2次方,在分母則是負號。
(應該都知道吧.....)
f'(x)= (-1/2) * [2(x^3)+3x]^(-3/2) * (6x+3)
步驟1↑ ↑步驟2 次方減一 ↑步驟3
(完整不動!!) (裡面微分)
寫完後再整理一下就是答案了,整理時小心計算錯誤。
--
(六)乘法模式微分
f(x)= g(x)*h(x)
f'(x)= g'(x)*h(x) + h'(x)*g(x)
訣竅:微前乘後 加 微後乘前
(七)除法模式微分
f(x)= g(x)/h(x)
g'(x)*h(x) - h'(x)*g(x) 微上乘下 減 微下乘上
f'(x)= ───────────── 訣竅:────────────
[h(x)]^2 分母平方
--
五六七合體常見試題
╴╴╴╴╴╴╴╴╴
√ 4(x^2)+3x 4(x^2)+3x
f(x)= [ ─────── ] 整理→ [ ─────── ]^(1/2)
5(x^3)-7(x^2) 5(x^3)-7(x^2)
微上乘下減微下乘上↓已經算好整理後
4(x^2)+3x -20(x^4)+15(x^3)-24(x^2)+42x
f'(x)= (1/2)*[ ─────── ]^(-1/2)* { ────────────── }
5(x^3)-7(x^2) [5(x^3)-7(x^2)]^2
分母平方
═════════════════════════════════════
f(x)= (3x-5)[(-5x+2)^2]
f'(x)= 3*[(-5x+2)^2] + [2(-5x+2)*(-5)](3x-5)
微前 乘後 加 微後 乘前
(↑有個鏈鎖律)
最後整理一下就是答案,我這麼寫就是不想算了……|||
--
不好意思手邊沒有題目所以數字可能設計的不太好……
我在看BBS時最不喜歡數學了,因為不像Word那麼好弄qq
希望可以被看的懂……如果有錯誤請指正^^
如果真的覺得太勉強就記住訣竅部分即可。
由外往內,乘除法、指數對數微分方式牢記,應該可以解微分80%以上的計算題了。
祝大家期中順利!
>>>會有人想要積分的速記嗎(光速逃XD)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.230.128.29
※ 編輯: fff0722 來自: 61.230.128.29 (11/03 21:24)
... <看更多>