#歌林家電的智慧轉型從離線語音紅外控制家電開始
#智慧咖啡機擠進早上趕著出門的情境之中
如果早上七點到八點人體感測器偵測到有人到廁所,則智慧咖啡機煮兩杯高濃度咖啡.....有吸引到你嗎?
憶聲集團旗下除了歌林品牌,還有德國品牌AXION,此次推出全新聲控 #AXION #智慧咖啡機 ,擁有「APP遠控」、「聲控」、「一鍵完成」三大特色的聲控智慧咖啡機,功能實用、設計人性化,也兼顧時尚外型時尚、親民價格,輕鬆方便就有美味咖啡隨時可以喝。
#歌林 強調,2021全新上市360度無死角的智慧聲控主機(小飛碟),在不需要連接網路的情況下,可以直接學習任何語言,並搭載最AI邊緣計算語音辨識系統及紅外線控制器 ,聲控距離最遠可達10公尺。
隨插即用的簡單設計,不需透過Wi-Fi、不用安裝APP或設定,從小朋友到長輩,都可以輕鬆使用,簡簡單單出一張嘴,即可在家享受「說得比做的容易」的便利生活。
#智能家電 成為趨勢 歌林推出聲控咖啡機強調動口不動手
https://lnkd.in/g4YYfZX
---
www.smarthomelab.tw #智慧家庭實驗室
#智慧家庭 #智能居家 #智慧家電
同時也有8部Youtube影片,追蹤數超過3萬的網紅MEeeep More,也在其Youtube影片中提到,redmi9 紅米9 以超高性價比HK$999開賣,呢部有四鏡頭、NFC同真三卡嘅人門機性能又係點呢?今日就同大家睇下!2020新機 redmi9 開箱評測 萬能遙控 xiaomi redmi9 紅米2020新機 redmi 9 review 開箱文 Google Pay 打開機盒之後,除咗手機...
紅外線 學習 app 在 賴士葆 Facebook 的最佳貼文
震驚!憤怒!
蔡政府全面執政竟然進行全面監控,行徑令人髮指。在野黨團的走廊上剛剛新增一倍的監視器,對立委進行遠端監控收音,所有談話甚至輕聲細語都被全都錄收音。還有遠端APP收看功能、人臉辨識功能、40公尺外的紅外線感應等等監控設備。這樣鋪天蓋地的監控在野黨立委,把立委當成公敵,當成準犯罪嫌疑人,是一個號稱民主自由國家應當有的作為嗎?
政府再怎麼攬權霸道,怎麼可以剝奪在野黨立委的言論自由或侵犯他們的隱私,這樣公然的監控立法委員,比白色恐怖時代的警總、祕密警察更令人震懾,因為裝設數位機器,鋪天蓋地的偵測蒐集聲音影像,所有言行舉止無所遁形,這在全世界民主國家是一個駭人聽聞的舉動。為了捍衛自身的權益,我一定會訴諸國際社會來正視台灣在野國會議員被執政當局剝奪言論自由的事情。
無端地對立委和助理進行監控收錄聲音和影像,已經逾越法律的權限,請問蔡英文和蘇貞昌,你們過去學習的法律專業所認知的民主自由人權,怎可因為執政掌權就全然扭曲?陳菊掌管國家人權委員會時說要讓人民活著沒有恐懼,現在連立法委員的言論自由都被監控,更遑論升斗小民,請問陳菊:以國安之名就暴斂橫行剝奪人民言論自由,合法嗎?
紅外線 學習 app 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
紅外線 學習 app 在 MEeeep More Youtube 的精選貼文
redmi9 紅米9 以超高性價比HK$999開賣,呢部有四鏡頭、NFC同真三卡嘅人門機性能又係點呢?今日就同大家睇下!2020新機 redmi9 開箱評測 萬能遙控 xiaomi redmi9 紅米2020新機 redmi 9 review 開箱文 Google Pay
打開機盒之後,除咗手機本身之外,盒入面亦包咗手機軟膠殻、Sim卡針、2A充電插頭同埋一條大USB頭去TypeC頭嘅充電傳輸線。搣開手機保護貼,睇睇個真身先。我就揀咗「晚霞紫」色,睇落外觀唔錯,手機頂部係紅外線收發位,手機嘅右側就係音量同開關掣,底部就有3.5mm耳機插頭同埋USB-C插頭。以入門機嚟講,規格算係OK有突。
redmi9 紅米9 手機正面嘅6.53寸水滴全屏幕效果可以接受,機背亦都用上咗4攝AI鏡頭技術,分別係1300萬像素嘅主攝廣角、800萬像素嘅超廣角、500萬像素嘅微距同埋200萬像素嘅景深鏡頭,陣間再同大家測試拍攝出嚟嘅效果。
Sim卡位喺手機嘅左面,Redmi9 採用咗真3卡設計,同時支擾2張Nano-SIM卡同埋1張MicroSD記憶卡,補番得32GB內存空間嘅不足。支援雙4G同雙VOLTE功能,收發電話唔需要跌番來3G。不過以手上嘅版本來睇,暫時就唔支援VoWiFi功能。
等我爆咗部機試下先!爆完,試下用瀏覽器上一般嘅網頁。可能係啱啱爆完機,又或者背景有嘢做緊,開瀏覽器嘅時候唔太順,反應慢咗少少。不過呢個情況過咗一陣就冇喇,Click落Link以至睇網頁入面嘅片都算順暢。
試埋要求資源較大、有走馬燈嘅新聞直播先!之前試入門機,呢個位都唔太順,不過Redmi 9 紅米9 嘅表現就無問題,睇咗2分鐘有多,中間無疾或者停過,收貨!
小米亦都喺紅米9 Redmi9 加入分屏功能,咁就試下啦!只要喺開咗嘅程式介面長撳住其中一個App,就會出現多個選項,揀番分屏,呢個App就會去咗畫面嘅上面。再喺下面開另一個App,就可以同時操作兩個程式,唔洗撳來撳去!上面一路播緊Video,下面睇Email,Redmi 9 嘅表現一樣流暢,抵讚啦!
頭先講過,Xiaomi Redmi 9 配置四攝鏡頭模組,影相出來嘅效果又係點呢? 首先睇吓幾張日常嘅風景相,問題絕對唔大,色準同對焦都無問題,放大睇下啲細節位!雖然細節位唔算Sharp,不過唔洗1000蚊嘅四攝入門機,都應該唔會有太高要求!俾大家睇埋微距同景深嘅表現! 好喇,再睇埋夜景!
總括來講,四個鏡頭表現中規中矩,但係加埋價錢呢個因素,三個字,無得輸!
呢部入門機亦罕有支援NFC、即係可以用到八達通App查數加增值,亦都支援Google Pay。 試下加張TapNGO 落Google Pay去便利店買嘢先! (出 Approved Screen就去下個畫面)
小米系列嘅手機近年都有部份配置咗紅外線傳輸功能,Redmi 9 就係其中一部。手機內置咗呢個「萬用遙控」嘅功能,入面收藏咗多款唔同電器嘅資料,可以幫你配對,將電話當遙控用。你亦可以去Play Store下載其他有學習功能嘅遙控App,以後搵唔到遙控都唔緊要啦!
呢部機內置咗5020mAh嘅電量,唔只夠自己用,用USB-C線仲可以幫其他裝置充電,當埋後備電用都唔錯呀!
#redmi9 #紅米9 #Z世代達人
紅外線 學習 app 在 賭Sir【杜氏數學】HermanToMath Youtube 的最讚貼文
杜氏數學 官方網站: http://www.HermanToMath.com
賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io
----------
1:53 ?7招消滅Careless Mistakes?
9:10 ?Paper1+Paper2即場戰術?
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
?著作:《YouTuber新手到網紅》、《5**數學男人嫁得過》、《碌葛男人嫁得過》、《賭波男人嫁得過》(獲Google嚴選2018年度50大最佳書籍)
----------
賭Sir收集著數派街坊:
❤️YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
?報讀初班 $600 (原價$800):https://www.youtubergo.com/payment/b-hermantomath-0600.html
?報讀初班+中班 $1500 (原價$1800):https://www.youtubergo.com/payment/bm-hermantomath-1500.html
官方網頁:https://www.youtubergo.com/
❤️無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
❤️Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
❤️Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
----------
2018 DSE FINAL TIPS
《DSE數學2018考生★唔知就笨★嘅10件小事》
https://www.youtube.com/watch?v=U99O0J_KUZg
----------
2017 DSE FINAL TIPS
《2017 DSE 數學 ★終極恥笑貼士班★》
https://www.youtube.com/watch?v=NkMKD4pjLH4
----------
《5**數學男人嫁得過》賭SIR X 戴曉峰(KEN TAI)
網上訂購: https://382now.com/product?id=149
----------
杜氏數學 官方網站 http://www.hermantomath.com
----------
《5**數學男人嫁得過》唔只係一本考試攻略,更加係一份 祝福、鼓勵、支持。
今時今日,香港嘅中學生真係好慘--DSE中文卷臭名遠播,連文章嘅作者都答唔中Marking Scheme;學咁多年英文,同西人傾偈都係非常吃力;通識更加唔使講,完全係政治副產品,搞著啲後生仔女,變相做磨心;啲選修科嘅Syllabus又係Cut到唔三唔四,散修修、四不象,都仲未講嗰啲乜鬼嘢「其他學習經歷」時數,強逼浪費時間,幫啲邪惡組織提供人力,做免費勞工賣旗。
好可惜,上述嘅殘局,我無力扭轉。唯獨是數學科,SKX學生&YouTube粉絲一直支持我,喺傳統教育制度以外,用嶄新嘅方法撥亂反正。我嘅理念係扶助香港嘅年青人,以最短時間考好數學,慳返更多嘅時間,做自己真正中意做嘅事,發展自己嘅人生。
年青人受壓逼,為人父母嘅壓力又點會細?望住仔女為咗迂腐過時嘅公開試頭痕頭痛,家長嘅精神壓力仲大。查實老師亦都辛苦,特衰政府教育制度畸型,好多情況都有心無力救。
《5**數學男人嫁得過》除咗係一本【教考試、教讀書、教神技、教搶分】嘅另類數學補習人工智能大數據紅外線納米棟篤娛樂秘笈之外,更加係對公開試準考生嘅一份祝福。
如果你手上嘅呢本書,係由某人送畀你嘅話,記得好好多謝佢。喺孤獨嘅人生旅途上,有人支持、有人鼓勵、有人為你打氣,係一件好幸福嘅事。衷心恭喜你!
#消滅Careless去1分53秒
#即場戰術去9分10秒
#記得讚好
----------
# 賭Sir是杜氏數學Herman To Math的始創人
# 全港唯一「完爆」【DSE Core+M1+M2】、【AL Pure+Applied】、【CE Maths+A.Maths】和【IAL 12科Maths】的數學補習導師
# YouTube Channel超過500萬Hit Rate、超過40000 Subscribers
# 全港第一訂閱粉絲最多的數學教育YouTuber
# 全港唯一數學補習YouTuber獲YouTube官方邀請出席首屆FanFest Creator Camp
# 全港唯一於2017年以手機App開Live授課 時薪過萬 的數學補習導師
# 暢銷書《賭波男人嫁得過》&《碌葛男人嫁得過》作者賭Sir
# 前者更獲Google嚴選2018年度50大最佳書籍之一
# 我們一起加油吧 !
紅外線 學習 app 在 柑仔家族 Youtube 的最佳貼文
柑仔家族商店購買BenQ Wit MindDuo 檯燈系列,再送結合APP兒童英文學習襪:https://shop.GamaFamily.tw
入座感應自動開燈
主動為您點亮孩子的學習之光
入座主動開燈,離席自動關燈
入座自動開燈為什麼很重要?在光線不足的時間或場所,孩子常常因為無法判斷是否該開燈,甚至忘記開燈摸黑看書,而導致視力傷害。孩子一入座,紅外線偵測感應即主動給光。除了碰觸關燈,在入席開燈模式下,孩子離開30分鐘即會自動關燈,為您減少電力的浪費。
BenQ護眼科技承諾
✓ 無頻閃 & 無藍光危害
✓ 低眩光、光源穩定且光線均勻
✓ 通過無頻閃 IEEE PAR 1789 認證,光線不閃爍
✓ 通過歐盟無藍光危害認證 IEC/EN 62471 和 IEC/EN 62778