MIT 科技評論12/8
* 【亞馬遜 AWS 推出會編曲的 AI 鍵盤,讓所有人愛上音樂編曲】亞馬遜 AWS 最近宣佈了一款名為 DeepComposer 的產品,兼具軟件和硬件,其定位是全球首款機器學習編曲鍵盤,通過 AI 編曲學習和掌握如何開發機器學習技術,尤其是如何使用生成對抗網絡(GAN)。
只要使用鍵盤輸入一小段旋律,DeepComposer 就可以將其改編成搖滾、流行、爵士和經典等不同風格,生成一段韻律相似的原創音樂,並且支持分享到 SoundCloud 平台。如果再加上些個人創意和代碼,它還可以學習和實現用戶自己創造的曲風。
目前亞馬遜只是宣佈DeepComposer ,具體的技術細節和發售日期尚未公佈。
* 【IBM人機辯論第三場:AI利大於弊觀點險勝,機器人為自己正名】近日,一個 IBM 機器人參與了一場質疑自身的辯論,論題是「AI 是否會帶來更大的弊端」,最終認為「利大於弊」的觀點險勝。
這場辯論在劍橋聯合會(Cambridge Union)展開。劍橋聯合會的辯論禮堂有 150 年的歷史,迎接過柴契爾夫人、羅斯福總統、霍金等等,從首相到總統,從明星演員到學界泰斗各行各業的辯論人士。但怎麼也想不到,今天會有 300 名觀眾觀看這場人類與AI的辯論。
* 【逃離家族的「詛咒」:一位70歲婦人的基因突變,這或許是對抗阿爾茨海默病遺傳的制勝法寶】在哥倫比亞麥德林市(Medellín, Colombia),有一個家族世代被阿爾茨海默病折磨糾纏。家族中的患病成員攜帶特定的基因突變,平均發病年齡在 40 歲左右。
這些基因突變是家族的印記,也是家族的詛咒。多少年來,來自這些家族的成員約有五分之一的概率被詛咒「選中」,一旦入選,就無法幸免,只能滑入遺忘之路。
但事情似乎出現了轉機!
* 【麻省理工學者用電磁波計算:具有高效潛力,不散熱且耗電極少】近日,麻省理工學院的研究人員提出了一種十分新穎的電路設計,該設計下的電路可以在不消耗電能的情況下,利用電磁波對計算機進行精確的控制。這一發現使基於磁的、實用性設備邁出了關鍵一步。使用此設計電路的設備將具有比傳統電子設備更為高效的運算潛力。同時,研究人員已經開始設計基於磁性的「自旋電子」設備,這種設備耗電相對較少,也幾乎不產生熱量。
未來成對的自旋波可以通過雙通道輸入到電路中,根據不同的特性進行調制,並結合起來以產生一些可測量的量子干擾——類似光子波干涉被用於量子計算。研究人員假設,這種基於干涉的自旋電子設備,比如量子計算機,可以執行常規計算機難以應對的高度複雜的任務。
* 【拆解戴森對小小吹風機的執著】科技在不斷地改變著人們對世界的看法,也無時無刻不在改善著人們的生活。
一切的改變,要追溯到 2016 年戴森 Supersonic 吹風機的推出。當其以快速乾發、氣流倍增和智能溫控不傷髪等科技大獲成功之後,整個市場也猶如發現新大陸般重新活躍起來。同時跟跑者與模仿者不斷湧現,市場上許多其他的吹風機產品為了與科技感掛鈎,提出了五花八門的模仿概念——「可以吹臉」「輔助吸收膠原蛋白」,甚至是「平價版戴森」的宣傳比比皆是。
* 【比肩二甲雙胍,這款「神藥」再添抗衰老新證: 塗抹4個月皮膚就改觀】衰老是人類與生俱來的恐懼,為了對抗它,人們不顧一切。美容養顏就是對抗衰老,是許多人共同且自然的願望。但古老吃豬蹄並不能讓膠原蛋白補在臉上,打肉毒素會讓面部僵硬,幹細胞美容更非現實。
這些或是缺少證據支持,或乃至帶來健康風險的美容方法,都沒有抓住美容的本質。要想美容,要從對抗衰老入手。
美國德雷克塞爾大學醫學院(Drexel University College of Medicine)的科學家就把目光鎖定在有望抗衰老的藥物雷帕霉素身上。
他們最新研究表明,在持續塗用雷帕霉素 8 個月後,受試者手部皮膚表面更光滑了,鬆弛減少,膚色也更均勻,色素沈著減少了。
* 【人類病患首次被置於假死狀態!生命暫停2小時,將必死之人搶救回來】美國馬里蘭大學醫學院的研究團隊近日首次成功讓一名患者進入「假死狀態」,按下「生命暫停鍵」的患者在完成急救手術後復蘇。
馬里蘭大學醫學院外科醫生 Samuel Tisherman 在接受科技媒體 New Scientist 採訪時表示,他的醫療團隊已經讓至少一名病人進入假死狀態,並聲稱他們自己在完成這一成果時也覺得「有點超現實」。
將人類進入「假死狀態」,這是 Tisherman 所領導的一項創傷急救臨床試驗的一部分,該試驗的目的是為治癒可能導致死亡的創傷爭取時間。臨床試驗中將人進入「假死狀態」的技術,由 Tisherman 開創,正式名稱為緊急保存和復蘇(emergency preservation and resuscitation,EPR)。
* 【AI發現莎士比亞經典劇作有代筆,幾乎一半場景由他人寫就】文學分析家們早就注意到,莎士比亞戲劇《亨利八世》中有另一位作者的痕跡。現在,神經網絡已經識別出了這些特定場景,以及這些場景是誰寫的。
在威廉·莎士比亞的一生中,他大部分時間都是 King’s Men 劇團的劇作家,該劇團在倫敦泰晤士河岸邊演出莎士比亞戲劇。1616 年,莎士比亞去世後,劇團需要一個人來接替他的工作,於是他們請來了當時最多產、最著名的劇作家之一約翰·弗萊徹(John Fletcher)。
自此之後,弗萊徹銷聲匿跡。
但是在 1850 年,一位名叫 James Spedding 的文學分析家注意到,弗萊徹的劇本和莎士比亞的《亨利八世》中的段落有驚人的相似之處。Spedding 斷定弗萊徹和莎士比亞在劇本中一定有過合作。
同時也有32部Youtube影片,追蹤數超過7,420的網紅まとめまとめの,也在其Youtube影片中提到,【まとめのまとめ】 チャンネル登録はこちら https://goo.gl/QN6ioA 宇宙について教えてください。 なんでもいいので… とても大きいです 宇宙ってどんどん膨張してるらしいが 宇宙の外側には何があんの? 何かがあるから拡れるんだよね? 何もなければ宇宙の果てが ...
電磁波計算 在 まとめまとめの Youtube 的最讚貼文
【まとめのまとめ】
チャンネル登録はこちら
https://goo.gl/QN6ioA
宇宙について教えてください。
なんでもいいので…
とても大きいです
宇宙ってどんどん膨張してるらしいが
宇宙の外側には何があんの?
何かがあるから拡れるんだよね?
何もなければ宇宙の果てが
存在するってことになるし…
地表が世界の全てであり
平面だと思っている蟻さんの
気持ちになってみよう。
地球がどんどん膨張したら
蟻さんにとっての宇宙は膨張するが、
地表に外側はないし果てもない。
蟻さんが二次元だと信じている世界は
実は三次元の球体の表面に
過ぎないけれど
蟻さんはそれを知覚して
いないのだから。
で、人間が永らく三次元だと
思っていた宇宙は実は
四次元の時空だったという
こと。
三次元的な果ても外側も
ないけれど膨張している。
ということは宇宙の謎を
解けば四次元ポケットの
開発も夢ではないということか…
蟻さんが高い知能を持って
いるとしよう。
地表は実は平面ではない
のではないか?
アインシュタインと呼ばれる蟻さんが
どうしたらそれを確かめる
ことができるかを考えた。
そして、できるだけ大きな
三角形を地面に描いて内角の
和を求め、
それが180度
ちょうどであれば地表は
平面であると証明できる
ことに気がついた。
で、実際に測ってみたら
地表に描いた三角形の内角の和は
180度より少し大きかった。
蟻さんたちは地表は
平ではなく二点間の最短
距離である直線は、
曲がった地表に沿って湾曲
していることを知った。
人類は今ここ。
続きあったんですね!
ありがとう!わかりやすい!
>そして、できるだけ大きな
三角形を地面に描いて内角の
和を求め、
それが180度
ちょうどであれば地表は
平面であると証明できる
ことに気がついた。
三角形の内角の和=180度=平面?
ごめんなさい、あたまが弱くて(涙)
宇宙のこと考えると眠れなくなる
考えるな
感じろ
宇宙は広かった
宇宙は、脳と構造が似ていて、
人の脳の中に宇宙がありその
中の人の中にまた宇宙が
あって無限ループになる。
と聞いたのですが。
どこらへんの構造が、
似てるの?
似てないと思う。
証拠写真
おもしれー。
似てる似てる。
あれだな、世の中結局、
引き合う力と反発する力の
さじ加減で出来てる
わけだからいろんな
スケールで似たような構造が
見つかるんだな。
これの中心が自分として
自分に関わる人間関係も
こんな風になったりしてね、
なーんちゃってwwwwww
ほぼ同じことを考えた
フーリエはそのアイディアで
本一冊書いたよ。
脳のシナプスと宇宙の
銀河系の広がりかただよな
太陽系の形=太陽の重力で
惑星が太陽の周りを回っている
銀河系の形=渦を巻いている
銀河系のほど大きな物は
重力の力では無理
しかし全ての銀河系が渦を
巻いているような形をして
いるのは何らかの力が働いているから
その未知なる力=
ダークマターと呼ばれている
四次元はx.y.zにt(時間)
って最近聞くけど
ぼくらが自在に操れるのはx
.y.zまでで
t(時間)を自在に操れる
ようにするのも理論上は可能
…らしいよね?
その先の5次元、6次元、
7.8.9.無限大次元
どーなってんの?
ごめん。
わかりません。
次元と言うのは軸の数だと思えばいい
一本の線がある、これが1次元
この線に垂直に線を引くと2次元
両方の線に対し垂直に線を
引けば3次元
3本に対して垂直に線を
引けるのが4次元空間だ
光速度は観測者によらず
一定で秒速30万km。
十分に重い天体の脱出速度は
光速以上になるため光すら脱出できず
ブラックホールと呼ばれる。
遠目にはただの重い星に
過ぎないが見ることはできない。
結局、とてつもなく大きく
とてつもなく長い時間を扱う宇宙論と
逆にとてつもなく小さく
とてつもなく短い時間を扱う
素粒子論の
分野はわからないことだらけ。
で、宇宙誕生
(ビッグバン)
の瞬間はその両方があわさるので
一層わからないのが実情です。
まだまだ俺たちは蟻さんと
変わらんのよ。
ありがとう、不思議な
気持ちになりました
宇宙の端っこは透明の壁に
なってるんじゃないんだ
宇宙って語りだすときりなく
なるよね…
俺は好きだけど…
宇宙の大規模構造は宇宙
誕生の謎を解く数少ない有力な鍵。
インフレーション以前の
量子的揺らぎで説明される、
らしい。
暇だから続き。
蟻さんよりだいぶ賢くなった
ギリシャ人は夜空の星や太陽、
月の動きを観察しながら
いろんなことに気がついた。
例えばシエナでは夏至の
正午に太陽が真上に来るため一瞬、
垂直の塔は影がなくなる。
同じ日にシエナより北の
アレクサンドリアではその
ようなことは起こらず
塔の北側に短い影ができる。
ギリシャ人はこのことから
地球が丸いことを知った。
アレクサンドリアとシエナの
距離は分かっているので
地球の直径が約
12000kmであることも
簡単な計算から突き止めた。
もともと地中海の海洋民族として、
北極星の高さが南に行くほど
低くなること、
船に乗って陸地に近づくと
水平線の向こうにはじめに
山頂から見え出すことを
知っていたので地球が丸い
ことはさほど意外では
なかったらしい。
太陽と月の動きも記録して
いたギリシャ人は地球の影に
満月が入ることで
月蝕が起こることも知った。
注意深く観察すると地球の
影は月四つ分の大きさがある
ことも月蝕の長さ
から突き止めた。
つまり月の直径は約3000km。
月の見かけの大きさから、
地球から月までは約
380000kmである
こともギリシャ人は突き止めた。
そんな優秀なギリシャ人が今は…
先祖に対する冒涜だな現代
ギリシャ人wwwwwwww
次に、より遠いと思われる
太陽までの距離を知りたい。
ギリシャ人は考えた。
月と地球と太陽が成す角度が
ちょうど90度の瞬間、
太陽が無限に遠ければ月は
ちょうどぴったり半月になるはず。
ところがその瞬間の月はやや
満月に近い。
これはこの位置関係では
太陽が若干月より地球に近い
ために起こると考えられる。
このわずかなズレから
ギリシャ人は太陽は月より
およそ300倍以上遠いこと、
おそらく太陽の直径は地球の
100倍ほど大きいという
結論に達した。
さらに惑星や星座を
散りばめた天球までの距離も
まったく正しい方法で
求めようとしたが残念ながら
観測機器の精度が不足して
おりこれは失敗した。
(望遠鏡も時計も数字に
ゼロもない時代だから仕方ない)
ただ、ギリシャ人は
天球までの距離は5億
km程度と想像していたらしい。
これは現在知られている
木星と土星の間くらい。
次回予告
ケプラー、ガリレオ、ニュートンの巻
この勤勉さを現代
ギリシャ人に教えたれ
思い切りはしょる。
ティコの観察をもとに
ケプラーが惑星運動の法則性を発見、
これをニュートンが
万有引力と運動方程式で
数学的に説明し尽くす。
天王星と海王星の発見こそは
ニュートン力学の圧倒的な勝利、
天文学者は幸福であった…
次回予告
マクスウェル、
マイケルソン・モーリー、
アインシュタイン、ハッブル
19世紀になって電気と
磁気との関係が明らかになり
電磁波の存在が予測され、
マクスウェル方程式からは
真空中の電磁波の伝播速度が
計算された。
それは既に知られていた
光速と一致するため、
光は電磁波の一種である
ことが判明した。
海が一面無風であるとしよう。
夜、船の甲板に立って顔に
当たる風の向きと強さを知ることで、
水夫は船がどの方向にどの
ような速度で進んでいるかを
知ることが出来るだろう。
マイケルソンとモーリーは
様々な方向で光速度を厳密に
測定することで
地球が宇宙の中でどのように
動いているかがわかるはずと考えた。
とりあえず公転方向とそれに
直行する方向で光速を測ってみた。
同じだった。
これは地球が宇宙の中で静止
していることを示している
のだろうか。
そうは思えない。
そこでアインシュタインの登場です。
需要があるなら明日に続く。
分かり易い!
是非とも続きを
あんたの文章にはロマンを感じるよ
俺の文章というより物理学
そのものにロマンが
あるからだと思う。
それをすべて切り捨てて
なるべく面白く書かないよう
工夫しているのが
物理の教科書なんだよな。
わかりやっす。
光速度が観測者の運動や
光源の移動にかかわらず
一定であるという観測事実は
ニュートン力学と矛盾する。
(実はマクスウェル
方程式とは矛盾しない)
マッハとかローレンツとか
フィッツジェラルドとか
当時の天才・秀才たちが
虚空を充たすエーテル
(真空を充し光を伝播する
想像上の物質=イーサネットの
イーサ
(Ether)のことね)
の引きずりとか渦巻きとか
摩擦とか仮定して苦労して
いいところまで行くのだが
うまくいかないし美しくない。
アインシュタインだけは光
速度一定が神の定めなら
ニュートン力学を忘れよう、
光速度一定からスタートして
世界観を再構成しようとした。
速さ=距離/時間。
速さが変化すべきなのに変化
しないなら、
距離と時間が変化したんじゃね、
と。
虚空に浮かぶ船の甲板にいる水夫。
顔に風は感じない。
目印になる島も星も水面もない。
彼は船が動いているのか
止まっているのか
知るすべもない。
(加速・減速していない
ことだけはわかる)
時折、水平線の向こうから
別の船が近づき水夫の
横を等速でまっすぐに通り
過ぎていく。
相手の船の甲板にも水夫が
いて髪はなびかず彼もまったく風を
感じていないらしい。
虚空を無数の船が思い思いの
方向に進んでいる。
どの船の水夫も風を感じていない、
という状況。
いったいどの船が動いていて
どの船が止まっているのか。
わかるわけがない。
わかるのは自分に対して
相手がどのように動いているかだけ。
どの船も自分は止まっていて
相手が動いていると感じている。
実は止まっているのも動いて
いるのも同じことで絶対的な
基準となる
座標系はこの世界には存在しない、
あるのは相対的な運動だけ。
どの船で測っても自分は静止
しているから光速度は一定。
ここまで考えた
アインシュタインは学生時代
唯一自分より数学の成績が
良かった奥さんに面倒な計算を任せ、
特殊相対性理論を完成させた。
水夫は船の上で光速度を測ってみる。
とりあぜ船首から船尾まで
光が到達する
時間を測った。
横を通過する船
(同じ長さね)
の上でも水夫が光速を測って
いるのが見える。
その様子を見ていると、
船首から発射された光が
船尾に到着するまでに船が
前進しているので、
わずかにこちらより短い
時間で光が到着している。
しかし相手から見れば自分が
静止していてこちらが動いて
いるのだからまったく逆の
ことを言う。
つまり、お互いに相手の船は
自分の船より短いようだ。
それでいて同じ時間で
光が到着しているというなら
そちらの時計は遅れている。
と言い合う。
の続き
要するに特殊相対性理論の結論は、
・光速度不変(大前提)
・慣性系はすべて平等
・運動する系の時間は遅れる
(静止系から見て)
・運動
電磁波計算 在 映像授業 Try IT(トライイット) Youtube 的最佳解答
■■■■■■■■■■■■■■■
【Try IT 視聴者必見】
★参加者満足度98.6%!無料の「中学生・高校生対象オンラインセミナー」受付中!
「いま取り組むべき受験勉強法」や「効率的に点数を上げるテスト勉強の仕方」、「モチベーションの上げ方」まで、超・実践的な学習法をあなたに徹底解説します!
今月・来月のセミナー内容や日程は、トライさん公式LINEからご確認いただけます。
↓↓友だち登録はこちらから↓↓
https://liny.link/r/1655096723-1GOJPwzq?lp=gcZxVv
■■■■■■■■■■■■■■■
この映像授業では「【物理基礎】 波動12 気柱の固有振動数」が約23分で学べます。この授業のポイントは「(気柱の固有振動数)=(音速)/{4×(弦の長さ)}×{2×(自然数)-1}」です。映像授業は、【スタート】⇒【今回のポイント】⇒【ココも大事!】⇒【練習】⇒【まとめ】の順に見てください。
この授業以外でもわからない単元があれば、下記のURLをクリックしてください。
各単元の映像授業をまとまって視聴することができます。
■「物理基礎」でわからないことがある人はこちら!
・物理基礎 速度と加速度
https://goo.gl/i3qJlj
・物理基礎 等加速度直線運動
https://goo.gl/mkZ6Dm
・物理基礎 落下運動
https://goo.gl/VXgcY9
・物理基礎 合成速度と相対速度
https://goo.gl/VQYPoa
・物理基礎 力のつりあいと作用反作用
https://goo.gl/KwQTVK
・物理基礎 運動の法則(運動方程式)
https://goo.gl/ro5baX
・物理基礎 摩擦力
https://goo.gl/y6hjvD
・物理基礎 弾性力
https://goo.gl/ia7OTc
・物理基礎 浮力と空気の抵抗力
https://goo.gl/d0qaPW
・物理基礎 仕事と運動エネルギー
https://goo.gl/PBXgZG
・物理基礎 力学的エネルギー保存の法則
https://goo.gl/wsVVMF
・物理基礎 温度と熱
https://goo.gl/EC1C2N
・物理基礎 熱力学第一法則
https://goo.gl/1WKjjf
・物理基礎 波の基本
https://goo.gl/26DJSq
・物理基礎 重ね合わせの原理、反射波
https://goo.gl/gwQ2gd
・物理基礎 弦、気柱、うなり
https://goo.gl/DlxWDu
・物理基礎 電流の基本
https://goo.gl/nE5yWy
・物理基礎 電流と抵抗
https://goo.gl/5RpjzB
・物理基礎 変圧器、電磁波
https://goo.gl/JoQWP2
・物理基礎 原子
https://goo.gl/qODr0E
電磁波計算 在 映像授業 Try IT(トライイット) Youtube 的最佳解答
■■■■■■■■■■■■■■■
【Try IT 視聴者必見】
★参加者満足度98.6%!無料の「中学生・高校生対象オンラインセミナー」受付中!
「いま取り組むべき受験勉強法」や「効率的に点数を上げるテスト勉強の仕方」、「モチベーションの上げ方」まで、超・実践的な学習法をあなたに徹底解説します!
今月・来月のセミナー内容や日程は、トライさん公式LINEからご確認いただけます。
↓↓友だち登録はこちらから↓↓
https://liny.link/r/1655096723-1GOJPwzq?lp=gcZxVv
■■■■■■■■■■■■■■■
この映像授業では「【物理基礎】 波動13 うなり」が約14分で学べます。この授業のポイントは「(うなりの振動数)=1/(周期)」です。映像授業は、【スタート】⇒【今回のポイント】⇒【練習】⇒【まとめ】の順に見てください。
この授業以外でもわからない単元があれば、下記のURLをクリックしてください。
各単元の映像授業をまとまって視聴することができます。
■「物理基礎」でわからないことがある人はこちら!
・物理基礎 速度と加速度
https://goo.gl/i3qJlj
・物理基礎 等加速度直線運動
https://goo.gl/mkZ6Dm
・物理基礎 落下運動
https://goo.gl/VXgcY9
・物理基礎 合成速度と相対速度
https://goo.gl/VQYPoa
・物理基礎 力のつりあいと作用反作用
https://goo.gl/KwQTVK
・物理基礎 運動の法則(運動方程式)
https://goo.gl/ro5baX
・物理基礎 摩擦力
https://goo.gl/y6hjvD
・物理基礎 弾性力
https://goo.gl/ia7OTc
・物理基礎 浮力と空気の抵抗力
https://goo.gl/d0qaPW
・物理基礎 仕事と運動エネルギー
https://goo.gl/PBXgZG
・物理基礎 力学的エネルギー保存の法則
https://goo.gl/wsVVMF
・物理基礎 温度と熱
https://goo.gl/EC1C2N
・物理基礎 熱力学第一法則
https://goo.gl/1WKjjf
・物理基礎 波の基本
https://goo.gl/26DJSq
・物理基礎 重ね合わせの原理、反射波
https://goo.gl/gwQ2gd
・物理基礎 弦、気柱、うなり
https://goo.gl/DlxWDu
・物理基礎 電流の基本
https://goo.gl/nE5yWy
・物理基礎 電流と抵抗
https://goo.gl/5RpjzB
・物理基礎 変圧器、電磁波
https://goo.gl/JoQWP2
・物理基礎 原子
https://goo.gl/qODr0E
電磁波計算 在 臺南健康情報讚, profile picture - Facebook 的推薦與評價
電磁波 小學堂基地台在屋頂、手機不離身,對健康有影響嗎⁉️ ... 還有機會抽500元商品卡(抽獎人數依第2次後測參與人數10%計算) 人數有限,額滿為止~ | Facebook ... ... <看更多>
電磁波計算 在 電磁學基礎(2) -- 向量微積分(作者:陳鍾誠) 的推薦與評價
如果、我們想用微積分的概念,透過很多微小區塊的積分來計算通量總合的話,那麼我們就可以 ... 以下的向量場微分方程式可以用來描述電磁波的傳遞行為,因此稱為波動 ... ... <看更多>