創新工場和BCG波士頓諮詢合作的「+AI改造者」系列:創新工場投資的追一科技,用領先的「數位員工」解決方案幫傳統企業降本提效。
改造者系列:傳統企業應用AI別想「短平快」 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智慧在大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
隨著當前人口紅利趨弱,企業的用工成本增加,「數位員工」存在大量的市場需求。成立於2016年的追一科技,通過其核心的AI語義分析技術,幫助傳統企業利用人工智慧技術解決勞動力短缺的問題,實現降本提效。
在采訪中,追一科技首席戰略官成捷認為,傳統企業應該扭轉AI應用「短平快」的認知,投入時間和精力去梳理和構建特定於AI的業務流程,以達到正向的循環。
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在企業服務領域,AI企業,即「改造者」,能夠最直接地賦能企業提升管理效率與節降成本。追一科技便是這一賽道的佼佼者之一,借助自然語言處理技術,其「AI數位員工」可以勝任線上客服專員、行銷專員、資料質檢員、銷售上崗培訓師、反洗錢專家等崗位。
■本期受訪嘉賓:成捷
追一科技是「AI數位員工」提供商,主攻深度學習和自然語言處理,提供智慧語義、語音和視覺的AI全棧服務。追一科技的AI數位員工智慧平臺與業務場景深度融合,提供不同類型的AI數位員工,滿足企業和政府使用者服務、行銷、運營、 辦公等多種場景的智慧化升級需求,幫助他們降本提效,改善用戶體驗,驅動創新和增長。
成捷是追一科技首席戰略官。在此之前,他曾任職于麥肯錫與騰訊。成捷先生擁有清華大學學士學位與加州理工大學博士學位。
■對談實錄
Q1:追一科技為何選擇幫助傳統企業應用AI?
成博士:追一科技的定位是「AI數位員工」服務商,本質上是智慧軟件,面向企業提供AI企業軟件來説明其降本增效。當前,隨著人口紅利趨弱,企業用工成本水漲船高,員工的流動性也在增加,市場上存在大量對於智慧客服、行銷、內部溝通等的需求,企業希望由機器解決勞動力短缺問題,並為企業降本。而追一的核心AI能力是語義分析,即機器如何像真人一樣理解和表達文本資訊,再結合創始人團隊的企業服務背景,恰好能夠滿足我們稱之為「數字員工」的市場需求。追一的語音、視頻應用能夠滿足銀行、運營商等企業線上交互管道上海量的對話交互需求,涉及行銷和業務辦理等,幾乎等同于傳統呼叫中心上千乃至上萬的人工。
同時,我們也看到近些年大量企業在推進資訊化建設、雲建設,企業數位化的基礎在不斷成熟。許多企業已經積累了大量結構化或非結構化的資料,但並不知道如何應用,不知道如何從海量資料中提煉洞察。追一可以説明他們通過資料分析來實現更精細化的運營,從而提升人的產能。以保險電銷為例,通過對銷售人員的資料分析,追一能夠提煉高績效員工值得借鑒的話術和知識點,標準化後以輔助推廣培訓。
Q2:在賦能傳統企業應用AI的過程中,追一遇到過哪些挑戰?又是如何應對的?
成博士:AI火爆之後,大部分企業的心態是先投資一部分進行嘗試,其中有些企業成功地體驗到了AI的成效,於是自發地持續梳理其業務流程、構建並優化知識庫,進入了一個正向循環,投入產出比也合理,逐漸能夠覆蓋到更多場景和業務部門。
而有些企業原本對AI的預期是「隨插即用」,期待AI能在短期之內帶來巨大改變,他們應用AI的效果往往就無法達到預期,也很難將AI的效用發揮到最大,往往在一次采購之後就沒有下文了。AI企業要扭轉傳統企業認為AI「短平快」的認知,投入時間和精力去梳理和構建特定於AI的業務流程,才能步入正向的循環。
其次,許多較早開始應用AI的企業組織規模都很大,涉及到很多不同的部門——分條線、分版塊、分職能等。如何能夠協調大型企業多部門之間不同的利益和訴求,這對於AI應用而言是另一大難點。以銀行為例,總行負責智慧化建設的IT或科技部門往往考慮更有整體性的、大量部門可以通用的、長期的解決方案,且看中綜合性和可持續性更強的供應商。而業務部門往往偏好更迅速、更精准的解決方案,傾向于先行自行采購。AI企業就需要平衡和兼顧雙方的需求。我判斷在中長期會有多流匯聚的趨勢,即企業的科技部門會統籌AI智慧化建設的規劃以及技術合作夥伴的選取,總部科技部門和一線業務部門會一同系統性地梳理需求。
同時,在業務梳理過程中,AI企業也需要增進其對行業的理解,從而幫助傳統企業梳理出哪些業務或場景更有AI價值、更容易落地,以塑造短期速贏。追一在進入每個行業時都需要花大量時間瞭解業務流程,建立行業知識庫。
最後,AI不像ERP之類的傳統軟體系統,沒有成熟的全鏈路玩家,還處在比較初級的階段,因此端到端的、定制化的AI服務是稀缺資源且具差異化優勢——系統實施上,大型企業系統多,往往也不標準化,十分消耗人力;知識庫定制上,不同企業的業務流程不同、知識不同,需要定制知識庫;軟體功能定制方面,不同規模、業務類型的企業依然存在不同的需求;哪怕在部署之後,AI企業依然需要持續優化場景,根據交互的效果持續優化業務流程,並試圖拓展新的場景。
Q3:如何理解追一「開放共贏的生態合作體系」?
成博士:追一對各類企業都秉持著開放合作的心態,我們識別了四大類合作夥伴——平臺夥伴、行業夥伴、區域夥伴和咨詢夥伴。
1. 平臺夥伴包括騰訊雲、華為雲等企業,平臺夥伴能夠提供基礎設施,起到「鋪電線」的作用。憑藉平臺夥伴強大的客戶資源和銷售網路,追一能夠觸達更多的終端客戶。而追一能在平臺夥伴通用性的基礎設施之上提供特定垂直領域的解決方案,使面向客戶的解決方案更好落地實施。
2. 行業夥伴指特定行業領域的資訊科技企業,他們相比其他夥伴有更深的行業理解以及更多行業內的客戶資源,也願意在科技方面進行嘗試。追一可以與行業夥伴共同拓展行業內的科技解決方案。
3. 區域夥伴指在當地有較強商務關係、對當地市場瞭解較深入的夥伴。
4. 咨詢夥伴則能夠提供整合咨詢服務,在數位化咨詢、財務咨詢等細分方向擁有豐富的咨詢經驗。
追一在生態合作中除了能夠提供行業定制化的技術方案之外,還可以分享和拓展渠道資源,幫助系統集成商、ISV增收。長遠來看,追一希望把產品服務做得更加標準化,可供他人調用,也可以在自有平臺上集成協力廠商產品和服務。
Q4:你認為未來AI企業的發展趨勢是什麼?
成博士:大趨勢一定是行業越做越深、場景越做越精,提供整體性的行業AI解決方案。這也是追一未來發展的優先事項。
此外,AI企業還應當繼續推進技術普惠,在當前AI大多只在大型企業使用,而未來應當覆蓋更多中小規模的企業。AI企業能做的是把大客戶的主流需求打磨好、標準化,大量復用從頭部企業積累的垂直領域專識,再在過程中逐步建立跨行業復用的能力。
■要點回顧
1.「人工智慧即服務」(AI-as-a-service)依然處於初級階段,還沒有成熟的全鏈路玩家,因此端到端的、定制化的AI服務能夠打造差異化的競爭優勢。
2. 傳統企業需要抓住時間窗口,憑藉多年深耕行業的經驗積累,在AI技術企業追趕行業知識的檔口自我顛覆、自我革命。
3. 對「改造者」而言,「先縱後橫」不失為可行的策略——欲實現持續穩定的AI發展,需要長期深耕垂直領域,持續積累行業know-how,並將縱深積累標準化,以複製到更多的垂直行業。
ai 複製 效果 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
台南古都融合 AI 科技,發展交通智慧化
作者 TechNews | 發布日期 2021 年 06 月 24 日 10:00 |
人工智慧(AI)一直是近年的熱門科技詞彙,根據「2021 台灣 AI 趨勢報告」,台灣有 84% 的受訪企業導入 AI 技術,以提高組織效率及創造營收為主要目標,在製造、行銷與客服等領域中獲得深入地應用。
AI 深度學習效果事半功倍
綠捷能智控股份有限公司(HIPOWER)長期致力於AI影像偵測辨識演算法的開發,過去應用領域也多於車牌辨識、車輛追蹤相關。2020 年參與臺南市政府合作 AI 城市巡檢先導應用試驗計畫,在臺南市政府智慧發展中心及交通局的協助之下,以臺南市東區東門路與自由路口、中西區府前路與南門路口為試驗場域,試驗情境則是配合臺南市政府的基礎設施下,在未對現有攝影系統架構有任何調整的情況,利用路口現地攝影鏡頭搜集影像數據,最終所使用影像解析度為 640×480,採用 YOLO 類神經演算法進行物件深度學習,並加入深度物件定位追蹤演算法。
在試驗的計畫裡,YOLO 模型主要應用在多類別與多場景的物件辨識上,所以會設計較多的卷積層,而每一種會再進行多次的卷積運算,造成模型本身較大,考量這次計畫中所需辨識的物件類型與場景相對單純的情況下,過多的卷積層及運算對提升準確率沒有明顯地影響,並且會造成模型訓練效能不佳,因此利用剪枝技術減少卷積層數與運算次數,來提升模型的訓練效能。同時在影像數據上進行優化的前置處理,提升整體影像亮度達一致程度,降低亮度不均及部分雜訊的干擾,如此對後續物件辨識及定位追蹤準確率將有所幫助。因此在本案中僅利用約 5,000 張的物件圖快速片建立辨識模型及完成調校參數,成功開發出路口行人偵測、車種(機車、小型車、大型車)辨識、各向車流及其轉向偵測辨識的解決方案。經過最終的驗證測試,在不同天色的情況下,整體車流偵測辨識準確率可達 95%,車流轉向比分析及車種辨識準確率則有 90% 以上,而人流亦有 90% 以上的辨識準確率。
原有設備升級,效益最大化
此方案除可以有效減輕交通單位的人力負擔外,也能為交通智慧化提供充足有效的即時基礎數據,並且因為使用地方政府路口現有攝影系統,未來在複製擴散上也可以用相對較低成本的方式來進行,試驗單位不需要為了導入AI技術而將現有攝影機升級。未來將可以此解決方案為基礎,建構路口動態資訊即時回饋,協助路口及行人號誌燈秒數優化,以提升整體交通運行的順暢度。
在完成上述臺南市政府試驗計畫後,2021 年第一季也順利將此方案的核心技術衍生應用到隧道事件偵測系統 IIDs 及在道路壅堵偵測系統 QLD 中,用以偵測追蹤隧道逆行車輛、隧道路邊停等、壅堵車流(種)偵測及佔有率計算等情形。在新一代行動通訊日漸普及的情況下,未來將會有更多以 AI 影像辨識技術為基礎的衍生性應用產生,推進智慧化應用的演進。
由此可見,影像辨識技術所衍生的應用豐富性,對於地方政府推動城市智慧化的過程中,將能以最低成本的方式來發揮既有影像系統的最大效益。
公私協力成為 AI 應用夥伴
目前市場上 AI 影像辨識分析應用開發上,多半採用開放式模型來進行演算法的開發,而實務環境條件複雜多變,為能達到商品化對穩定性的要求,通常需要搭配自主開發的演算法,以強化模型偵測及辨識的能力,同時更需要實際場域建置的經驗、高品質數據的採樣及訓練參數組的建構,來對模型進行分析與調校,如此才能成為成熟且穩定的應用系統架構。
臺南是一個持續進化的科技古都,市府非常積極在導入創新科技應用,也因此保持開放態度在智慧化應用推動上,有系統地啟動在地方政府間相當少見的應用試驗計畫,在提供題目、條件限制及實際場域的情況下,邀請產業界進行解決方案開發與技術驗證,並希望業者能持續投入資源進行商品化,協助地方政府智慧化應用能夠水平擴散及垂直深化,這是一個成功案例,將對公部門與民間合作推動智慧化應用有正向的影響。
附圖:▲ 模型建立作業流程
▲ VDS 系統辨識畫面
▲ 以 AI 影像辨識為基礎的衍生應用
▲ 辨識分析結果畫面呈現
資料來源:https://technews.tw/2021/06/24/tainans-ancient-capital-integrates-ai-technology-to-develop-intelligent-transportation/?fbclid=IwAR1OJBuRIm3IbznQ-YcDuJo4r7xaKjlCyMpxS7oiiFP4Xogl7YXTMaAKRpM
ai 複製 效果 在 陳良基的創新筆記 Facebook 的最佳解答
生技博士看莫德納疫苗的成功
210527,從莫德納製藥,我們學到什麼?
2000年麻省理工學院生物工程阿費揚( Noubar Afetan) 博士,成立旗艦創投,提供資金給早期階段有希望的創業者,2010年成立莫德納公司,成立宗旨,開發創新醫療產業。一開始即定位為「數位生技」公司,專注於開發以mRNA為主的創意平台,此破壞性創新,已明顯顛覆傳統製藥模式。
2020年1月11號,當中國公布COVID-19病毒基因排序後, 1月13日莫德納已設計完成病毒疫苗。2月7號製造出臨床一期所需疫苗量;2月24通過品管測試,隨即送往NIH準備臨床一期試驗,打入志願者體內,一切皆在兩個月內完成,史無前例 ,並於去年12月獲FDA核准。目前已有七種預防性疫苗在生產缐上,包括對抗COVID-19,茲卡、H7N9及RSV等病毒的疫苗。
傳統疫苗製藥公司,採用減毒或去活性疫苗。一般而言病毒在體內可複製數千次,而減毒的病毒複製少於20次,不會產生疾病,低病毒量足以使人身體產生抗體,例如水痘、麻疹及小兒麻痺症疫苗。去活性疫苗,病毒無法在體內複製,但免疫系統仍能認為病毒入侵,而產生抗體,因此需要數劑以達到免疫效果,例如A型肝炎及狂犬病疫苗。大藥廠如嬌生、默克、輝瑞及羅氏等,仰賴傳統方式開發新藥及疫苗。
2010年MIT蘭格(Robert Langer)教授介紹阿氏,波士頓兒童醫院羅西(Derrick Rossi)醫師的成果,羅氏利用mRNA重新編程細胞,阿氏則推測mRNA可重新編程細胞,或許可藉由打入mRNA,使病人產生自己的生物蛋白。立即組成團隊,探討mRNA是否可以成為治療藥物?蘭氏和羅氏持續提供莫德納在科學上的指引。
莫德納成功的密訣
第一,建立一平台技術,利用同樣方法可以同時用來開發多種藥物。關鍵技術在於能掌握如何修飾mRNA,增加其在細胞內的穩定性及半衰期。莫德納以mRNA為藥物,和大藥廠完全不同。利用脂奈米顆粒包住mRNA,送入細胞內,mRNA如一擁有遺傳密碼的模板,指導細胞質內的核糖體,製造所指示的棘狀蛋白質,進而誘導免疫系統產生抗體,過程完全不影響細胞核內DNA的運作。
第二,完全數位化,強化基礎建設符合數位環境,並延攬數位及製藥專家。 2016年已成為一完全數位化的生技公司,全部自動化推動快速學習,相信數位化是應用人工智慧於製程的第一步。建立AI工廠,利用雲端作業,使資料存在雲中更安全便宜迅速且俱彈性。
第三,整合以增加效率及產能,所有產業過程及數據皆得整合,例如實驗室中的儀器,皆靠IOT連結以利資訊整合。 整廠自動化,採用自動化及機器人技術,除去人為可能造成的錯誤。製造數位化,製造是大藥廠重要一環,其角色乃將先前研發結果,轉變成產品供應。
總而言之,生物科技產業是人才技術資金管理及市場的整合。「科學追求知識,而產業尋找解決方案」。莫得納能利用他人智慧,跳開傳統思考模示及束縛,迅速打開製藥產業新的一扇窗,更值得學習。台灣過去30年來,生技產業見樹而未見林,疫苗短缺將只是冰山上的一角,沒有深厚產學背景,那來臨機應變。我們著實需要一俱遠見,能洞燭先機,熟悉產業競爭力及了解基礎科學能耐的領導者,勇於創新堅持承擔重任,方能點亮台灣生技產業的一盞光明燈,改變,現在正是契機。
作者﹕許英昌博士
現任單位﹕英騰生物科技股份有限公司
國立中正大學生命科學系兼任助理教授