3/5 GIVEAWAY ☺️
Given the COVID-19 situation this year, today’s giveaway is targeted to those who mainly work/study from home and find the need for a new & durable chair.
In collab with @secretlab, we will be giving away 2 different chairs (with accessories) to 2 winners!
The first set includes:
- 1 x OMEGA Stealth Chair (SGD620), 1x Secretlab Lanyard (SGD25), and 1 x Secretlab Leather Cleaner (SGD38).
- The second set includes 1 x TITAN Stealth Chair (SGD700), 1 x Secretlab Lanyard (SGD25), and 1 x Secretlab Leather Cleaner (SGD38).
Total value: SGD1,446
It’s important to have a conducive & comfortable workspace to increase our productivity and make the best out of working/schooling from home 💪🏻 and I personally find that Secretlab chairs have been extremely useful for me especially since I spend long hours in front of the computer.
ENTER GIVEAWAY BY:
1. Make sure you’re following me (@naomineo_) and @secretlab
2. Like this post, comment which chair you’d like to win and tag 2 friends that will want to join this giveaway too!
OPEN TO ALL GENDERS + ANY AGE.
You can always join on behalf of your family/if you know someone else who may need this! Also you can state why you or your friend needs it for an extra chance of winning it :)
Reminder: Your entry will only qualify if all requirements are met. All qualified entries will be selected to put into a randomizer and the final winner will be announced on 25/12/20.
As mentioned, the idea of this giveaway started with the intention to help those in need, so please join this with a mindful heart. Tysm and best of luck 💓 *This givesway is only open to those based in Singapore because their store is based here.
同時也有1部Youtube影片,追蹤數超過6萬的網紅Adam Lobo TV,也在其Youtube影片中提到,Ultimate Minimalist Desk Setup 2020! - A Minimalist Desk Tour Setup 2020 Get Wondershare RecoverIt at the link below:- Free data recovery software do...
best computer chair 在 國立陽明交通大學電子工程學系及電子研究所 Facebook 的最佳解答
【演講】2019/11/19 (二) @工四816 (智易空間),邀請到Prof. Geoffrey Li(Georgia Tech, USA)與Prof. Li-Chun Wang(NCTU, Taiwan) 演講「Deep Learning based Wireless Resource Allocation/Deep Learning in Physical Layer Communications/Machine Learning Interference Management」
IBM中心特別邀請到Prof. Geoffrey Li(Georgia Tech, USA)與Prof. Li-Chun Wang(NCTU, Taiwan)前來為我們演講,歡迎有興趣的老師與同學報名參加!
演講標題:Deep Learning based Wireless Resource Allocation/Deep Learning in Physical Layer Communications/Machine Learning Interference Management
演 講 者:Prof. Geoffrey Li與Prof. Li-Chun Wang
時 間:2019/11/19(二) 9:00 ~ 12:00
地 點:交大工程四館816 (智易空間)
活動報名網址:https://forms.gle/vUr3kYBDB2vvKtca6
報名方式:
費用:(費用含講義、午餐及茶水)
1.費用:(1) 校內學生免費,校外學生300元/人 (2) 業界人士與老師1500/人
2.人數:60人,依完成報名順序錄取(完成繳費者始完成報名程序)
※報名及繳費方式:
1.報名:請至報名網址填寫資料
2.繳費:
(1)親至交大工程四館813室完成繳費(前來繳費者請先致電)
(2)匯款資訊如下:
戶名: 曾紫玲(國泰世華銀行 竹科分行013)
帳號: 075506235774 (國泰世華銀行 竹科分行013)
匯款後請提供姓名、匯款時間以及匯款帳號後五碼以便對帳
※將於上課日發放課程繳費領據
聯絡方式:曾紫玲 Tel:03-5712121分機54599 Email:tzuling@nctu.edu.tw
Abstract:
1.Deep Learning based Wireless Resource Allocation
【Abstract】
Judicious resource allocation is critical to mitigating interference, improving network efficiency, and ultimately optimizing wireless network performance. The traditional wisdom is to explicitly formulate resource allocation as an optimization problem and then exploit mathematical programming to solve it to a certain level of optimality. However, as wireless networks become increasingly diverse and complex, such as high-mobility vehicular networks, the current design methodologies face significant challenges and thus call for rethinking of the traditional design philosophy. Meanwhile, deep learning represents a promising alternative due to its remarkable power to leverage data for problem solving. In this talk, I will present our research progress in deep learning based wireless resource allocation. Deep learning can help solve optimization problems for resource allocation or can be directly used for resource allocation. We will first present our research results in using deep learning to solve linear sum assignment problems (LSAP) and reduce the complexity of mixed integer non-linear programming (MINLP), and introduce graph embedding for wireless link scheduling. We will then discuss how to use deep reinforcement learning directly for wireless resource allocation with application in vehicular networks.
2.Deep Learning in Physical Layer Communications
【Abstract】
It has been demonstrated recently that deep learning (DL) has great potentials to break the bottleneck of the conventional communication systems. In this talk, we present our recent work in DL in physical layer communications. DL can improve the performance of each individual (traditional) block in the conventional communication systems or jointly optimize the whole transmitter or receiver. Therefore, we can categorize the applications of DL in physical layer communications into with and without block processing structures. For DL based communication systems with block structures, we present joint channel estimation and signal detection based on a fully connected deep neural network, model-drive DL for signal detection, and some experimental results. For those without block structures, we provide our recent endeavors in developing end-to-end learning communication systems with the help of deep reinforcement learning (DRL) and generative adversarial net (GAN). At the end of the talk, we provide some potential research topics in the area.
3.Machine Learning Interference Management
【Abstract】
In this talk, we discuss how machine learning algorithms can address the performance issues of high-capacity ultra-dense small cells in an environment with dynamical traffic patterns and time-varying channel conditions. We introduce a bi adaptive self-organizing network (Bi-SON) to exploit the power of data-driven resource management in ultra-dense small cells (UDSC). On top of the Bi-SON framework, we further develop an affinity propagation unsupervised learning algorithm to improve energy efficiency and reduce interference of the operator deployed and the plug-and-play small cells, respectively. Finally, we discuss the opportunities and challenges of reinforcement learning and deep reinforcement learning (DRL) in more decentralized, ad-hoc, and autonomous modern networks, such as Internet of things (IoT), vehicle -to-vehicle networks, and unmanned aerial vehicle (UAV) networks.
Bio:
Dr. Geoffrey Li is a Professor with the School of Electrical and Computer Engineering at Georgia Institute of Technology. He was with AT&T Labs – Research for five years before joining Georgia Tech in 2000. His general research interests include statistical signal processing and machine learning for wireless communications. In these areas, he has published around 500 referred journal and conference papers in addition to over 40 granted patents. His publications have cited by 37,000 times and he has been listed as the World’s Most Influential Scientific Mind, also known as a Highly-Cited Researcher, by Thomson Reuters almost every year since 2001. He has been an IEEE Fellow since 2006. He received 2010 IEEE ComSoc Stephen O. Rice Prize Paper Award, 2013 IEEE VTS James Evans Avant Garde Award, 2014 IEEE VTS Jack Neubauer Memorial Award, 2017 IEEE ComSoc Award for Advances in Communication, and 2017 IEEE SPS Donald G. Fink Overview Paper Award. He also won the 2015 Distinguished Faculty Achievement Award from the School of Electrical and Computer Engineering, Georgia Tech.
Li-Chun Wang (M'96 -- SM'06 -- F'11) received Ph. D. degree from the Georgia Institute of Technology, Atlanta, in 1996. From 1996 to 2000, he was with AT&T Laboratories, where he was a Senior Technical Staff Member in the Wireless Communications Research Department. Currently, he is the Chair Professor of the Department of Electrical and Computer Engineering and the Director of Big Data Research Center of of National Chiao Tung University in Taiwan. Dr. Wang was elected to the IEEE Fellow in 2011 for his contributions to cellular architectures and radio resource management in wireless networks. He was the co-recipients of IEEE Communications Society Asia-Pacific Board Best Award (2015), Y. Z. Hsu Scientific Paper Award (2013), and IEEE Jack Neubauer Best Paper Award (1997). He won the Distinguished Research Award of Ministry of Science and Technology in Taiwan twice (2012 and 2016). He is currently the associate editor of IEEE Transaction on Cognitive Communications and Networks. His current research interests are in the areas of software-defined mobile networks, heterogeneous networks, and data-driven intelligent wireless communications. He holds 23 US patents, and have published over 300 journal and conference papers, and co-edited a book, “Key Technologies for 5G Wireless Systems,” (Cambridge University Press 2017).
best computer chair 在 Adam Lobo TV Youtube 的最佳解答
Ultimate Minimalist Desk Setup 2020! - A Minimalist Desk Tour Setup 2020
Get Wondershare RecoverIt at the link below:-
Free data recovery software download: http://bit.ly/2WhtwWW
Recoverit Data Recovery helps you recover lost and deleted files in 3 steps and minutes.
1000+ types and formats of data are available. It supports to recover data from laptop,
recycle bin/trash, internal hard drive, external storage media, and even a crashed computer
This is the Adam Lobo TV Desk Setup Tour 2020 and nothing is more satisfying on the eye than seeing a clean minimalist desk setup whether it is purely for your workstation, editing studio or even a music studio.
I really wanted to take my desk setup in a minimalist approach within my budget to simplify and get the most productivity features so this is what I came up with! So enjoy this desk tour
Product Links
Evis Smart Desk
https://www.evis.com.my/products/White-p153645661
Get RM200 off using the code ADAMLOBO200 at check out
Ergohuman Executive Mesh Chair
https://amzn.to/2UbjMuI (Amazon US & Worldwide)
LG 38 Inch Monitor
https://amzn.to/2xMBM75 (Amazon US & Worldwide)
https://t.productlink.io/a14ekj (Malaysia)
Full video review:- https://www.youtube.com/watch?v=2FGxayVOAnE&t=196s
AudioEngine A5+
https://amzn.to/3d6n8ry (Amazon US & Worldwide)
https://www.techx.com.my/products/audioengine-a5-wireless-powered-bookshelf-speakers (Malaysia)
Azio Mechanical Keyboard (Wired)
https://amzn.to/2QmOSyg (Amazon US & Worldwide)
https://t.productlink.io/a14ekl (Malaysia)
Joaquin Lobo
NOT FOR SALE
Apple Magic Mouse 2
https://t.productlink.io/a14ekl (Amazon US & Worldwide)
https://t.productlink.io/a14ekm (Malaysia)
Macbook Pro 15 Inch Late 2017
Specs:-
- 3.1 GHz Quad-Core Intel Core i7
- 16 GB 2133 MHz LPDDR3
- Radeon Pro 560 4 GB
- 1TB Storage
iQunix Laptop Stand
https://amzn.to/2wZtVCP (Amazon US & Worldwide)
Amazon Echo Show 5
https://amzn.to/2IPtqxE (Amazon US & Worldwide)
https://www.techx.com.my/products/echo-show-best-smart-home-display-with-alexa-2019 (Malaysia)
Google Home Hub
https://amzn.to/2QofgHX (Amazon US & Worldwide)
https://t.productlink.io/a14ekn (Malaysia)
Xiaomi Smart LED Strip
https://amzn.to/3b15wv3 (Amazon US & Worldwide)
https://t.productlink.io/a14eko (Malaysia)
My Previous Desk Setup 2018: http://bit.ly/2oGT8dd
My YouTube Gear 2017: http://bit.ly/2so8Hrr
Love The Music & Sound Effects That I Use In My Videos? Get Them At The Link Below:-
https://bit.ly/3brLdr5
Support Adam Lobo TV:-
Donate to the channel: http://paypal.me/adamlobo
Become a monthly contributor on Patreon: https://www.patreon.com/adamlobo
Instagram: https://www.instagram.com/adamlob0/
Twitter: https://twitter.com/adam_lobo
Facebook: www.fb.com/adamlobotv
Snapchat: @adamlob0
Adam Lobo TV: www.adamlobo.tv
Adam Lobo Official Profile Website: www.adamlobo.com
Dragon Red Band Official Website: www.dragonred.com
#adamlobotv #2020desksetup #ultimateminimalistdesksetup
