🤓 หลายคนอาจเคยบ่น "เรียนเลขไปทำไม ไม่เห็นได้ใช้โค้ดดิ้งเลย"
อันนี้เป็นแค่ตัวอย่าง เพื่อให้รู้ว่าเลขที่เราเรียนตอนม.ปลาย
ไม่ควรทิ้งถ้าคิดจะเรียนคอมพิวเตอร์ ในระดับสูง
.
👉 1) สมการเชิงเส้น
เริ่มต้นจากสมการเส้นตรง ที่มีหน้าตาดังนี้ y=mx+c เรียกว่ารูปมาตรฐาน
- เมื่อ m เป็นความชัน
-ส่วน c เป็นจุดตัดแกน y
.
สมการเชิงเส้นเราจะได้เรียนในระดับ ม 4
พอในม.5 วิชา วิทยาการคำนวณ
ก็จะเห็นประโยชน์ของสมการเส้นตรงถูกนำไปใช้ในงาน data science (วิทยาการข้อมูล)
นำไปใช้วิเคราะห์ข้อมูลแบบ linear regression
.
กล่าวคือเมื่อเรามีข้อมูลย้อนหลังในอดีต
แล้วสามารถนำไปพล็อตลงบนกราฟแกน x กับ y
ผลปรากฏว่าข้อมูลมีความสัมพันธ์เป็นเส้นตรง
ในกรณีเราสามารถหาสมการเส้นตรงที่เหมาะสมสุด (optimize)
นำมาใช้พยากรณ์ข้อมูลล่วงหน้าในอนาคตได้
.
แต่ในกรณีที่ความสัมพันธ์ของข้อมูลพบว่าไม่ใช่เส้นตรง
เราสามารถใช้สมการที่ไม่ใช่เส้นตรง มาใช้พยากรณ์ข้อมูลก็ได้เช่นกัน
.
👉 2) เมทริกซ์
คือกลุ่มของจำนวนตัวเลข ที่เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส
นอกจากใช้แก้สมการหลายตัวแปรแล้ว
จะมีประโยชน์เวลานำไปประมวลภาพ (Image processing)
หรืองานพวกคอมพิวเตอร์วิชั่น (computer vision)
.
ต้องบอกอย่างนี้ว่า รูปภาพดิจิตอลที่เราเห็นเป็นสีสันสวยงาม
แต่ทว่าคอมไม่ได้มองเห็นเหมือนคน
มันมองเห็นเป็นเมทริกซ์ โดยข้างในเมทริกซ์ก็คือตัวเลขของค่าสี
และเราสามารถกระทำการคณิตศาสตร์กับรูปภาพได้
เช่น บวกลบ คูณหาร กับรูปภาพดิจิตอล ในมุมของเมทริกซ์
.
👉 3) ความน่าจะเป็น
ยกตัวอย่างเช่น ทฤษฏี Bayes' theorem
ทฤษฏีหนึงของความน่าจะเป็น
จะใช้หาว่าสมมติฐานใดน่าจะถูกต้องที่สุด โดยใช้ความรู้ก่อนหน้า (Prior Knowledge)
.
ทฤษีนี้ถูกนำไปใช้ในงานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่อง
เช่น จงหาความน่าจะเป็นที่ชาเขียวขวดนั้นจะผลิตจากโรงงานจากประเทศไทย
จงหาความน่าจะเป็นว่าผู้ป่วยจะเป็นโรคมะเร็ง เมื่อหายจากการติดเชื้อไวรัสโคโรนา
เป็นต้น
.
👉 4) แคลคูลัส
ตัวอย่างเช่น ถูกนำมาใช้ใน neural network
ซึ่งก็เครือข่ายประสาทเทียมที่เลียนแบบเซลล์สมอง
แต่จริงๆ ข้างในเครือข่ายจะประกอบไปด้วยน้ำหนัก
.
น้ำหนักที่ว่านี้มันก็คือตัวเลขจำนวนจริง ที่เริ่มต้นสุ่มขึ้นมา
แล้วเวลาจะหาค่าน้ำหนักที่เหมาะสม (optimize)
มันจะถูกปรับทีละเล็กทีละน้อย
โดยอาศัยหลักการเรื่องอนุพันธ์ หรือดิฟนั่นแหละ
.
👉 5) ตรรกศาสตร์
วิชานี้พูดถึง "ประพจน์" หมายถึงประโยคที่ให้ค่าออกมาเป็น True หรืด False
รวมถึงการใช้ตัวเชื่อมประพจน์แบบต่างๆ ไม่ว่าจะเป็น "และ" "หรือ" "ก็ต่อเมื่อ" เป็นต้น
.
ศาสตร์ด้านนี้เป็นพื้นฐานของระบบคอมพิวเตอร์
เพราะวงจรคอมพิวเตอร์พื้นฐาน มีแต่ตัวเลข 0 หรือ 1
จึงสามารถแทนด้วย False หรือ True ในทางตรรกศาสตร์
ไม่เพียงเท่านั้นวงจรอิเลคทรอนิกส์ ก็มีการดำเนินทางตรรกศาสตร์อีกด้วย
ไม่ว่าจะเป็น "และ" "หรือ" "ไม่" เป็นต้น
.
ยิ่งการเขียนโปรแกรม ยิ่งใช้เยอะ
เพราะต้องเปรียบเทียบเงื่อนไข True หรือ False
ในการควบคุมเส้นทางการทำงานของโปรแกรม
.
👉 6) ฟังก์ชัน
ฟังก์ชันคือความสัมพันธ์ จากเซตหนึ่งที่เรียกว่า 'โดเมน' ไปยังอีกเซตหนึ่งที่เรียกว่า 'เรนจ์' โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ซึ่งคอนเซปต์ฟังก์ชันในทางคณิตศาสตร์
ก็ถูกนำไปใช้ในการเขียนโปรแกรมแบบ functional programming
.
👉 7) เรขาคณิตวิเคราะห์
ถูกนำไปใช้ในวิชาคอมกราฟิก หรือเกมส์
ในมุมมองของคนที่ใช้โปรแกรมวาดรูปต่างๆ หรือโปรแกรมสร้างแอนนิมเชั่นต่างๆ
เราก็แค่คลิกๆ ลากๆ ก็สร้างเสร็จแล้วใช่มั๊ยล่ะ
.
แต่หารู้หรือไม่ว่า เบื้องเวลาโปรแกรมจะวาดรูปทรง เช่น สี่เหลี่ยม วงรี ภาพตัดกรวยต่างๆ
ล้วนอาศัย เรขาคณิตวิเคราะห์ พล็อตวาดรูปทีละจุดออกมาให้เราใช้งาน
.
👉 8) ปีทาโกรัส
ทฤษฏีสามเหลี่ยมอันโด่งดังถูกนำไปใช้วัดระยะทางระหว่างจุดได้
ซึ่งจะมีประโยชน์ในการแยกแยะข้อมูล โดยใช้อัลกอริทึม
K-Nearest Neighbors (KNN)
ชื่อไทยก็คือ "ขั้นตอนวิธีการเพื่อนบ้านใกล้ที่สุด "
มันจะถูกนำไปใช้งานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่องอีกด้วย
ไม่ขอพูดเยอะเดี่ยว ม.5 ก็จะได้รู้จัก KNN ในวิชาวิทยาการคำนวณ
.
👉 9) ทฤษฏีกราฟเบื้องต้น
อย่างทฤษฏีกราฟออยเลอร์ (Eulerian graph)
ที่ได้เรียนกันในชั้น ม.5 จะมีประโยชน์ในวิชาคอม
เช่น ตอนเรียนในวิชา network ของคอมพิเตอร์ เพื่อหาเส้นทางที่ดี่สุดในการส่งข้อมูล
หรือจะมองโครงสร้างข้อมูลเป็นแบบกราฟก็ได้ ก็ลองนึกถึงลิงค์ต่างในเว็บไซต์ สามารถจับโยงเป็นกราฟได้ด้วยนะ
.
👉 10) เอกซ์โพเนนเชียล และลอการิทึม
เราอาจไม่เห็นการประยุกต์ใช้ตรงๆ นะครับ
แต่ในการประเมินประสิทธิภาพของอัลกอริทึม เวลาเขียนโปรแกรม
เขาจะใช้ Big O ขอไม่อธิบายเยอะแล้วกันเนอะ
เรื่องนี้มีเขียนอยู่ตำราวิทยาการคำนวณชั้นม.4 (ไปหาอ่านเอาได้)
.
ซึ่งเทอม Big O บางครั้งก็อาจเห็นอยู่ในรูปเอกซ์โพเนนเซียล หรือลอการิทึมนั่นเอง
ถ้าไม่เข้าใจว่า เอกซ์โพเนนเซียล หรือลอการิทึม คืออะไร
ก็ไม่จะอธิบายได้ว่าประสิทธิภาพของอัลอริทึมเราดีหรือแย่
.
.
+++++++
เป็นไงยังครับ สนใจอยากรู้ว่า เลข ม.ปลาย
สามารถนำไปใช้ศึกษาต่ออะไรอีกบ้างไหมเนี่ย
ถ้าอยากรู้ ผมเลยขอแนะนำหนังสือ (ขายของหน่อย)
.
หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก"
เข้าใจได้ด้วยเลขม. ปลาย เล่ม 1 (เนื้อหาภาษาไทย)
ติดอันดับ Best seller ในหมวดหนังสือคอมพิวเตอร์ ของ MEB
.
เนื้อหาจะอธิบายปัญญาประดิษฐ์ (A) ในมุมมองเลขม.ปลาย
โดยปราศจากการโค้ดดิ้งให้มึนหัว
พร้อมภาพประกอบสีสันให้ดูอ่านง่าย
.
สนใจสั่งซ์้อได้ที่
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
ถ้าซื้อผ่าน Web,Android ราคาปกติ 295 บาท
.
.
วิธีการซื้อ
1) สมัครเป็นสมาชิกเว็บ www.mebmarket.com ก่อน
2) ดาวน์โหลดแอพของ meb ค้นหาชื่อ meb นี้แหละ (ถ้าจะอ่านบน desktop ก็ดาวน์โหลดโปรแกรมาก่อน)
3) แล้วสั่งซื้อ โอนเงินก็ตามรายละเอียดที่เว็บแนะนำครับผม
4) จากนั้นก็ใช้โปรแกรม หรือแอพของ meb เปิดอ่านหนังสือครับผม
5) ถ้ามีปัญหาติดต่อทางทีม support@mebmarket.com เขาจะให้คำตอบคำผม
(พอดีฝากขายที่นี้ด้านเทคนิคพวกนี้ผมจะไม่รู้ครับ)
.
ถ้าเพื่อนๆ ที่อ่านหนังสือผ่านระบบ iOS
เวลาจะชำระเงิน ไม่ควรจ่ายผ่านบัตร
เพราะจะซื้อหนังสือแพงขึ้นครับ ราคา 329 บาท
.
แนะนำให้ชำระเงิน
- โดยให้เปิดเว็บ https://www.mebmarket.com
- แล้ว login ด้วย username เดียวกับที่เราใช้ใน app บน iOS
- หลังจากนั้นก็เลือกซื้อหนังสือปกติ
.
ซื้อเสร็จแล้วมันจะไปโผล่ใน app บน iOS
จากนั้นเพื่อนสามารถเข้าใช้งานด้วย username และ password อันเดียวกันกับหน้าเว็บเลยครับ
จะซื้อได้ในราคาที่เห็นตามเว็บนี้ (ไม่แพง)
.
สำหรับวิธีอ่านอีบุ๊กเล่มนี้
ก็ต้องเลือกโปรแกรม/แอพ ให้เหมาะกับระบบที่เราใช้อยู่
วิธีอ่านอีบุ๊กก็ตามลิงก์ต่อไปนี้
https://docs.google.com/document/d/e/2PACX-1vSI4hZgymHgbqhX3CA6anA_18wRy-iXU9oIlupUr-KwAWvJyxI9zdLrJcPUW77xz8lbvRFfW10747Oe/pub
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
ตัวอย่างหนังสือ
👉 สารบัญ:
https://drive.google.com/file/d/1L6-XYMVCWYNkvYXZYP9kOuzAIzPfHuaf/view?usp=sharing
.
👉 ตัวอย่างแต่ละบท
ตัวอย่างบทที่ 1 แนะนำ AI
📗 https://drive.google.com/file/d/19kzbuRtN14eDEYhNewBh4ZUCa6sexaIf/view?usp=sharing
.
ตัวอย่างบทที่ 3 แนะนำ machine learning
📗 https://drive.google.com/file/d/1pe8ty5hVZS0M3zGZe5WliOOTm6Cqv1Ti/view?usp=sharing
.
ตัวอย่างบทที่ 4 เรื่อง linear regression
📗
https://drive.google.com/file/d/1ju_wF6c9CNiYWfSzIIuqV9aUuEa4eurh/view?usp=sharing
.
ตัวอย่างบทที่ 8 เรื่อง CNN
📗 https://drive.google.com/file/d/1lGqsfXs16mV2IbEJx-4IgDslaHOut1kC/view?usp=sharing
.
ตัวอย่างบทที่ 9 เรื่อง RNN, LSTM
📗 https://drive.google.com/file/d/1dxEhj7syoXFAfQB9bqmwXGrfhgz3M7GQ/view?usp=sharing
.
ตัวอย่างบทที่ 10 เรื่อง Deep Q Learning
📗 https://drive.google.com/file/d/129-FPDP-9FJrMNsVqWMJdER762jOzs9G/view?usp=sharing
.
ตัวอย่างบทที่ 11 เรียนรู้แบบไร้ครูผู้สอน
📗 https://drive.google.com/file/d/15njvUq8Vbq3SRA-PHxVGq8Isr1cL3F3d/view?usp=sharing
.
👉 youtube: https://youtu.be/rLo-XdToGFI
👉 รีวิวหนังสือจากผู้เขียนตำราเทพเอกเซล https://www.facebook.com/thepexcel/posts/1424798431031509/
.
.
.
ขออภัยเล่มกระดาษตอนนี้ยังไม่มี โทดทีนะครัชชช
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai progammer
同時也有1部Youtube影片,追蹤數超過12萬的網紅prasertcbs,也在其Youtube影片中提到,ดาวน์โหลดโค้ดได้ที่ ► http://bit.ly/2Nc3gq6 เชิญสมัครเป็นสมาชิกของช่องนี้ได้ที่ ► https://www.youtube.com/subscription_center?add_user=prasertcbs สอนภ...
「functional programming c++」的推薦目錄:
functional programming c++ 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳貼文
(ดูเฉลยข้างล่าง)
.
.
.
.
.
.
.
.
.
.
.
.
โค้ดนี้เขียนด้วยภาษา javascript
ฝั่งซ้ายมือคนดู เขียนแบบฟังก์ชันปกติธรรมดา เป็นการรีเทิร์น return a*b*c ตรงไปตรงมา
.
.
ฝั่งขวามือคนดู ที่แปลกประหลาดพิสดาร
- เป็นการใช้ inner function ประกาศฟังก์ชันซ้อนกัน 3 ตัว
- มีการใช้ closures
ทำให้ฟังก์ชันลูกมองเห็นและจำค่าตัวแปรของฟังก์ชันก่อนหน้าที่ครอบข้างนอกมันได้
- จึงทำให้เวลาเรียก cal() ทีละครั้ง ตัวประโยค return a*b*c เสมือนประมวลผลนิพจน์ (expressioin) บางส่วนเอาไว้
.
โดยทั้งนี้โค้ดสองตัวอย่างให้ผลลัพธ์เหมือนกัน ฝั่งขวามือจะออกแนว functional programming หน่อยๆ แต่จะเปลือง call stack
.
.
ต่อไปคือชั่วโมงขายของ
ถ้าใครสนใจความแปลกประหลาดพิสดารของภาษา javascript (คนละตัวกับภาษา java นะ) ภาษาที่ขึ้นชื่อว่าเข้าใจยากทีสุดตัวหนึ่ง ก็แนะนำอ่านหนังสือในตำนาน เพราะพิมพ์มานาน ได้จากเล่มนี้
.
https://www.se-ed.com/…/พัฒนาเว็บแอปพลิเคชั่นด้วย-JavaScrip…
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai programmer
functional programming c++ 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最讚貼文
🤓 หลายคนอาจเคยบ่น "เรียนเลขไปทำไม ไม่เห็นได้ใช้เลย"
อันนี้เป็นแค่ตัวอย่าง เพื่อให้รู้ว่าเลขที่เราเรียนตอนม.ปลาย
ไม่ควรทิ้งถ้าคิดจะเรียนคอมพิวเตอร์ ในระดับสูง
.
👉 1) สมการเชิงเส้น
เริ่มต้นจากสมการเส้นตรง ที่มีหน้าตาดังนี้ y=mx+c เรียกว่ารูปมาตรฐาน
- เมื่อ m เป็นความชัน
-ส่วน c เป็นจุดตัดแกน y
.
สมการเชิงเส้นเราจะได้เรียนในระดับ ม 4
พอในม.5 วิชา วิทยาการคำนวณ
ก็จะเห็นประโยชน์ของสมการเส้นตรงถูกนำไปใช้ในงาน data science (วิทยาการข้อมูล)
นำไปใช้วิเคราะห์ข้อมูลแบบ linear regression
.
กล่าวคือเมื่อเรามีข้อมูลย้อนหลังในอดีต
แล้วสามารถนำไปพล็อตลงบนกราฟแกน x กับ y
ผลปรากฏว่าข้อมูลมีความสัมพันธ์เป็นเส้นตรง
ในกรณีเราสามารถหาสมการเส้นตรงที่เหมาะสมสุด (optimize)
นำมาใช้พยากรณ์ข้อมูลล่วงหน้าในอนาคตได้
.
แต่ในกรณีที่ความสัมพันธ์ของข้อมูลพบว่าไม่ใช่เส้นตรง
เราสามารถใช้สมการที่ไม่ใช่เส้นตรง มาใช้พยากรณ์ข้อมูลก็ได้เช่นกัน
.
👉 2) เมทริกซ์
คือกลุ่มของจำนวนตัวเลข ที่เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส
นอกจากใช้แก้สมการหลายตัวแปรแล้ว
จะมีประโยชน์เวลานำไปประมวลภาพ (Image processing)
หรืองานพวกคอมพิวเตอร์วิชั่น (computer vision)
.
ต้องบอกอย่างนี้ว่า รูปภาพดิจิตอลที่เราเห็นเป็นสีสันสวยงาม
แต่ทว่าคอมไม่ได้มองเห็นเหมือนคน
มันมองเห็นเป็นเมทริกซ์ โดยข้างในเมทริกซ์ก็คือตัวเลขของค่าสี
และเราสามารถกระทำการคณิตศาสตร์กับรูปภาพได้
เช่น บวกลบ คูณหาร กับรูปภาพดิจิตอล ในมุมของเมทริกซ์
.
👉 3) ความน่าจะเป็น
ยกตัวอย่างเช่น ทฤษฏี Bayes' theorem
ทฤษฏีหนึงของความน่าจะเป็น
จะใช้หาว่าสมมติฐานใดน่าจะถูกต้องที่สุด โดยใช้ความรู้ก่อนหน้า (Prior Knowledge)
.
ทฤษีนี้ถูกนำไปใช้ในงานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่อง
เช่น จงหาความน่าจะเป็นที่ชาเขียวขวดนั้นจะผลิตจากโรงงานจากประเทศไทย
จงหาความน่าจะเป็นว่าผู้ป่วยจะเป็นโรคมะเร็ง เมื่อหายจากการติดเชื้อไวรัสโคโรนา
เป็นต้น
.
👉 4) แคลคูลัส
ตัวอย่างเช่น ถูกนำมาใช้ใน neural network
ซึ่งก็เครือข่ายประสาทเทียมที่เลียนแบบเซลล์สมอง
แต่จริงๆ ข้างในเครือข่ายจะประกอบไปด้วยน้ำหนัก
.
น้ำหนักที่ว่านี้มันก็คือตัวเลขจำนวนจริง ที่เริ่มต้นสุ่มขึ้นมา
แล้วเวลาจะหาค่าน้ำหนักที่เหมาะสม (optimize)
มันจะถูกปรับทีละเล็กทีละน้อย
โดยอาศัยหลักการเรื่องอนุพันธ์ หรือดิฟนั่นแหละ
.
👉 5) ตรรกศาสตร์
วิชานี้พูดถึง "ประพจน์" หมายถึงประโยคที่ให้ค่าออกมาเป็น True หรืด False
รวมถึงการใช้ตัวเชื่อมประพจน์แบบต่างๆ ไม่ว่าจะเป็น "และ" "หรือ" "ก็ต่อเมื่อ" เป็นต้น
.
ศาสตร์ด้านนี้เป็นพื้นฐานของระบบคอมพิวเตอร์
เพราะวงจรคอมพิวเตอร์พื้นฐาน มีแต่ตัวเลข 0 หรือ 1
จึงสามารถแทนด้วย False หรือ True ในทางตรรกศาสตร์
ไม่เพียงเท่านั้นวงจรอิเลคทรอนิกส์ ก็มีการดำเนินทางตรรกศาสตร์อีกด้วย
ไม่ว่าจะเป็น "และ" "หรือ" "ไม่" เป็นต้น
.
ยิ่งการเขียนโปรแกรม ยิ่งใช้เยอะ
เพราะต้องเปรียบเทียบเงื่อนไข True หรือ False
ในการควบคุมเส้นทางการทำงานของโปรแกรม
.
👉 6) ฟังก์ชัน
ฟังก์ชันคือความสัมพันธ์ จากเซตหนึ่งที่เรียกว่า 'โดเมน' ไปยังอีกเซตหนึ่งที่เรียกว่า 'เรนจ์' โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ซึ่งคอนเซปต์ฟังก์ชันในทางคณิตศาสตร์
ก็ถูกนำไปใช้ในการเขียนโปรแกรมแบบ functional programming
.
👉 7) เรขาคณิตวิเคราะห์
ถูกนำไปใช้ในวิชาคอมกราฟิก หรือเกมส์
ในมุมมองของคนที่ใช้โปรแกรมวาดรูปต่างๆ หรือโปรแกรมสร้างแอนนิมเชั่นต่างๆ
เราก็แค่คลิกๆ ลากๆ ก็สร้างเสร็จแล้วใช่มั๊ยล่ะ
.
แต่หารู้หรือไม่ว่า เบื้องเวลาโปรแกรมจะวาดรูปทรง เช่น สี่เหลี่ยม วงรี ภาพตัดกรวยต่างๆ
ล้วนอาศัย เรขาคณิตวิเคราะห์ พล็อตวาดรูปทีละจุดออกมาให้เราใช้งาน
.
👉 8) ปีทาโกรัส
ทฤษฏีสามเหลี่ยมอันโด่งดังถูกนำไปใช้วัดระยะทางระหว่างจุดได้
ซึ่งจะมีประโยชน์ในการแยกแยะข้อมูล โดยใช้อัลกอริทึม
K-Nearest Neighbors (KNN)
ชื่อไทยก็คือ "ขั้นตอนวิธีการเพื่อนบ้านใกล้ที่สุด "
มันจะถูกนำไปใช้งานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่องอีกด้วย
ไม่ขอพูดเยอะเดี่ยว ม.5 ก็จะได้รู้จัก KNN ในวิชาวิทยาการคำนวณ
.
👉 9) ทฤษฏีกราฟเบื้องต้น
อย่างทฤษฏีกราฟออยเลอร์ (Eulerian graph)
ที่ได้เรียนกันในชั้น ม.5 จะมีประโยชน์ในวิชาคอม
เช่น ตอนเรียนในวิชา network ของคอมพิเตอร์ เพื่อหาเส้นทางที่ดี่สุดในการส่งข้อมูล
หรือจะมองโครงสร้างข้อมูลเป็นแบบกราฟก็ได้ ก็ลองนึกถึงลิงค์ต่างในเว็บไซต์ สามารถจับโยงเป็นกราฟได้ด้วยนะ
.
👉 10) เอกซ์โพเนนเชียล และลอการิทึม
เราอาจไม่เห็นการประยุกต์ใช้ตรงๆ นะครับ
แต่ในการประเมินประสิทธิภาพของอัลกอริทึม เวลาเขียนโปรแกรม
เขาจะใช้ Big O ขอไม่อธิบายเยอะแล้วกันเนอะ
เรื่องนี้มีเขียนอยู่ตำราวิทยาการคำนวณชั้นม.4 (ไปหาอ่านเอาได้)
.
ซึ่งเทอม Big O บางครั้งก็อาจเห็นอยู่ในรูปเอกซ์โพเนนเซียล หรือลอการิทึมนั่นเอง
ถ้าไม่เข้าใจว่า เอกซ์โพเนนเซียล หรือลอการิทึม คืออะไร
ก็ไม่จะอธิบายได้ว่าประสิทธิภาพของอัลอริทึมเราดีหรือแย่
.
+++++++
เป็นไงยังครับ สนใจอยากรู้ว่า เลข ม.ปลาย
สามารถนำไปใช้ศึกษาต่ออะไรอีกบ้างไหมเนี่ย
ถ้าอยากรู้ ผมเลยขอแนะนำหนังสือ (ขายของหน่อย)
.
หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก"
เข้าใจได้ด้วยเลขม. ปลาย เล่ม 1 (เนื้อหาภาษาไทย)
ติดอันดับ Best seller ในหมวดหนังสือคอมพิวเตอร์ ของ MEB
.
เนื้อหาจะอธิบายปัญญาประดิษฐ์ (A) ในมุมมองเลขม.ปลาย
โดยปราศจากการโค้ดดิ้งให้มึนหัว
พร้อมภาพประกอบสีสันให้ดูอ่านง่าย
.
สนใจสั่งซ์้อได้ที่
👉 https://www.mebmarket.com/web/index.php…
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
.
ราคาขาย 295 บาท ฿
แต่ถ้าซื้อผ่านระบบของ Apple จะแพงขึ้น ราคา 329 บาท ฿
วิธีอ่าน อ่านผ่านแอพหรือโปรแกรมเท่านั้น
.
ขออภัยเล่มกระดาษตอนนี้ยังไม่มี โทดทีนะครัชชช
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai progammer
functional programming c++ 在 prasertcbs Youtube 的最佳貼文
ดาวน์โหลดโค้ดได้ที่ ► http://bit.ly/2Nc3gq6
เชิญสมัครเป็นสมาชิกของช่องนี้ได้ที่ ► https://www.youtube.com/subscription_center?add_user=prasertcbs
สอนภาษา Python ► https://www.youtube.com/playlist?list=PLoTScYm9O0GH4YQs9t4tf2RIYolHt_YwW
สอนภาษาไพธอน Python OOP ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEIZzlTKPUiOqkewkWmwadW
สอน Python 3 GUI ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFB1Y3cCmb9aPD5xRB1T11y
สอนภาษา C เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GHHgz0S1tSyIl7vkG0y105z
สอนภาษา C++ ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEfZwqM2KyCBcPTVsc6cU_i
สอนภาษา C# ► https://www.youtube.com/playlist?list=PLoTScYm9O0GE4trr-XPozJRwaY7V9hx8K
สอนภาษา Java ► https://www.youtube.com/playlist?list=PLoTScYm9O0GF26yW0zVc2rzjkygafsILN
สอนภาษา PHP เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GH_6LARFxozL_viEsXV2wgO
สอนภาษา R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GF6qjrRuZFSHdnBXD2KVICp
#prasertcbs #prasertcbs_python