Glow getter, let's glow together!💫 An innovative solution for glowing and flawless skin by Cellnique
💙Hydra Boost Ceramides First Essence
Lightweight and non-greasy essence gives instant hydration and guards skin against dryness
💙MA 18
Speeds up skin renewal and corrects skin discoloration. This serum provide a youthful, clearer and radiant skin, gives a pleasant beauty experience
Easy steps for best skincare routine💦
Step 1: Cleanser
Step 2: Toner
Step 3: Hydra Boost Ceramides First Essence
Step 4: MA 18
Step 5: Serum / moisturizer
Directions
🌞Morning: Gently pat Hydra Boost Ceramides First Essence on the entire face after cleansing and toning
🌛Night: After applying Hydra Boost Ceramides First Essence, squeeze 2-3 drops of MA 18 onto the palm and apply it evenly on the face and neck until fully absorbed, followed by applying moisturizer
🔥Awesome Promo only for my followers!
Get the Cellnique Glow Getter at only RM38 (retail price is RM138) if you purchase at the link below: https://www.cellnique.my/cart/order/index
Every purchase come with
1) 1 box Cellnique Glow Getter
2) Attached with 1 pcs RM100 treatment discount & Free 1 pcs of Intensive Hydrating Silk Masque (NP: RM32) voucher
* Each customer valid to purchase 1 box only
For any enquiries, you may contact Cellnique customer careline at 0129207735
Limited combo with a special price for a limited time. Get yours now! Time to glow💖
#cellnique #glowgetter #letsglowtogether #ma18 #Hydraboostceramidesfirstessence #koreanglassskinformula #sfartography #rainbowpegasus #beautyblogger #malaysiablogger
「np squeeze」的推薦目錄:
- 關於np squeeze 在 SF Artography Facebook 的最佳貼文
- 關於np squeeze 在 Tallpiscesgirl Facebook 的最佳解答
- 關於np squeeze 在 Removing length 1 axes with numpy.squeeze 的評價
- 關於np squeeze 在 Squeezing (8750, 4, 35) np array to (35000, 35) - Stack Overflow 的評價
- 關於np squeeze 在 NumSharp/np.squeeze.cs at master · SciSharp ... - GitHub 的評價
- 關於np squeeze 在 Recitation 0b - Squeezing & Unsqueezing Numpy arrays (6/8) 的評價
- 關於np squeeze 在 Np squeeze在PTT/mobile01評價與討論 - 瑜珈皮拉提斯資訊指南 的評價
- 關於np squeeze 在 Np squeeze在PTT/mobile01評價與討論 - 瑜珈皮拉提斯資訊指南 的評價
np squeeze 在 Tallpiscesgirl Facebook 的最佳解答
[❗ GIVEAWAY ALERT] All the hype on KOREAN GLASS SKIN but how to achieve it?
Pretty simple, really! You just need Cellnique Glow Getter set with Hydra Boost Ceramides First Essence to get your skin pumped up with moisture and MA 18 for poreless, dewy complexion, just like baby's skin ❤️
❓ How to use:
Day routine - Gently pat Hydra Boost Ceramides First Essence on the entire face after cleansing and toning
Night routine - After applying Hydra Boost Ceramides First Essence, squeeze 2-3 drops of MA 18 onto the palm and apply evenly on the face and neck until fully absorbed, followed moisturizer
For being my loyal follower, you can purchase this set at only RM 38 (RRP: RM 138)! Each purchase comes with 1 box of Glow Getter set, 1 pcs RM100 treatment discount and free 1 pcs of Intensive Hydrating Silk Masque (NP: RM32) voucher.
BUY HERE: https://www.cellnique.my/cart/order/addtocart?AddToCartTrigger=1&Quantity=1&ProductID=175
[GIVEAWAY] 5 lucky winners will receive a set of Cellnique Glow Getter kit!
Details: https://www.instagram.com/p/CELYTb7JHc1/
np squeeze 在 Squeezing (8750, 4, 35) np array to (35000, 35) - Stack Overflow 的推薦與評價
... <看更多>
相關內容
-
why do we need np.squeeze()? - Stack Overflow
-
np.squeeze what means axis=-1? - Stack Overflow
-
How to remove multiple axis from numpy array using np ...
-
plt.imshow(np.squeeze(x_train[3]), cmap="gray"); what does ...
-
stackoverflow.com 的其他相關資訊
-
why do we need np.squeeze()? - Stack Overflow
-
np.squeeze what means axis=-1? - Stack Overflow
-
How to remove multiple axis from numpy array using np ...
-
plt.imshow(np.squeeze(x_train[3]), cmap="gray"); what does ...
-
stackoverflow.com 的其他相關資訊
np squeeze 在 NumSharp/np.squeeze.cs at master · SciSharp ... - GitHub 的推薦與評價
High Performance Computation for N-D Tensors in .NET, similar API to NumPy. - NumSharp/np.squeeze.cs at master · SciSharp/NumSharp. ... <看更多>
np squeeze 在 Removing length 1 axes with numpy.squeeze 的推薦與評價
import numpy as np >>> arr = np.random.normal(size=(4, 1, 6)) >>> arr.shape (4, 1, 6). >>> squeezed = np.squeeze(arr) >>> squeezed.shape (4, 6). ... <看更多>