本週的播放清單如下
週一:向量函數的積分
週二:曲面分析與面積分
週三:旋轉體分析
週四:三變數函數的積分
週五:向量函數的極限、連續與微分
以下是可以許願的清單
記得只能許願某個重點,不能直接許一整章
若是有人許過你想許的主題
可到 YT 許願
youtube.com/post/UgxOAnbloHj78w6vjI14AaABCQ
若是想買完整課程請到
👉 https://www.changhsumath.cc
【積分(前篇)】
重點一 定積分直觀觀念
重點二 奇偶函數的積分
重點三 定積分正式定義
重點四 積分運算性質
重點五 微積分基本定理 I - 先微再積型
重點六 不定積分與反導數
重點七 雙曲函數
重點八 微分表II
重點九 四大積分基本方法之一:變數變換法
重點十 四大積分基本方法之二:三角置換法
重點十一 四大積分基本方法之三:分部積分法
重點十二 積分表
重點十三 四大積分基本方法之四:部分分式法
【積分(後篇)】
重點一 進階積分技巧:高次倍角三角函數積分
重點二 特殊積分形式之其一:含絕對值的積分
重點三 特殊積分形式之其二:含無窮的積分 (瑕積分)
重點四 微積分基本定理 II - 先積再微型
重點五 旋轉體積分
【數列與級數】
重點一 數列與數列的極限
重點二 數列極限的運算性質
重點三 數列連續化求極限法
重點四 夾擠定理
重點五 單調數列與有界數列
重點六 級數
重點七 級數的運算性質
重點八 級數審斂法一:等比級數
重點九 級數審斂法二:p-級數
重點十 級數審斂法三:比較審斂法
重點十一 級數審斂法四:極限比較審斂法
重點十二 級數審斂法五:比值審斂法
重點十三 級數審斂法六:根值審斂法
重點十四 級數審斂法七:積分審斂法
重點十五 級數審斂法八:交錯級數審斂法
重點十六 絕對收斂和條件收斂
重點十七 冪級數
重點十八 冪級數的運算
重點十九 泰勒級數與泰勒定理
【多變數函數的微積分】
重點一 多變數函數
重點二 二變數函數的極限
重點三 二變數函數極限特殊求法
重點四 二變數函數極限運算定理
重點五 二變數函數的連續
重點六 二變數函數的偏微分
重點七 高階偏微分
重點八 偏微分運算律
重點九 多變數函數的微分量 (全微分)
重點十 方向導數
重點十一 梯度與等高線
重點十二 等值面與切平面
重點十三 相對極值、絕對極值和鞍點
重點十四 拉格朗日乘數法
重點十五 二變數函數的積分:二重積分
重點十六 二重積分的極座標轉換
重點十七 二重積分的應用
重點十八 三變數函數的積分:三重積分
重點十九 柱座標與球座標
重點二十 三重積分的應用
【向量微積分】
重點一 向量函數的定義
重點二 向量函數的極限、連續與微分
重點三 向量函數的積分
重點四 曲線分析
重點五 旋轉體分析
重點六 向量場與保守場
重點七 線積分
重點八 微積分基本定理 for 線積分
重點九 格林定理
重點十 梯度、旋度、散度
重點十一 曲面
重點十二 曲面分析與面積分
重點十三 散度定理
重點十四 史托克定理
以上就是能許願的清單
統計到本周六晚上 10 點
結果會在本周日晚上公告
然後下周一至五晚上 6 點在我頻道限時首播
同時也有1部Youtube影片,追蹤數超過1萬的網紅CMmath,也在其Youtube影片中提到,向量座標化是很重要的一個解題技巧, 幫大家整理8個題目, 大家可以先下載講義練習, https://lihi1.com/cJulU 在回來搭配影片學習唷!! 想要更完整的課程,請到微補習商店 https://cmmath.com #平面向量 #座標化...
「向量座標」的推薦目錄:
- 關於向量座標 在 數學老師張旭 Facebook 的最佳貼文
- 關於向量座標 在 數學老師張旭 Facebook 的最佳解答
- 關於向量座標 在 數學老師張旭 Facebook 的最讚貼文
- 關於向量座標 在 CMmath Youtube 的精選貼文
- 關於向量座標 在 Re: [理工] [線代] 向量座標化證onto問題- 看板Grad-ProbAsk 的評價
- 關於向量座標 在 平面向量-向量座標的表示法說明 - YouTube 的評價
- 關於向量座標 在 向量座標化題型整理 - YouTube 的評價
- 關於向量座標 在 平面向量-已知兩點求向量座標、長度例題 - YouTube 的評價
- 關於向量座標 在 [理工] [線代] 向量座標化證onto問題- 看板Grad-ProbAsk 的評價
向量座標 在 數學老師張旭 Facebook 的最佳解答
【頻道會員影片:張旭許願池2020版】
我 2020 年拍的張旭許願池
從今天起變成頻道會員影片了
如果你想看以下主題的影片
歡迎加入我的會員
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 (https://youtu.be/SByv7fMtMTY)
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:Jordan form 與 SVD 簡介 (https://youtu.be/6JX_nNBW0dk)
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 (https://youtu.be/GZRWgcY5i6Y)
EP12:Fourier 級數與 Fourier 轉換 (https://youtu.be/85q-2nInw7Y)
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 (https://youtu.be/9c-lCLV4F0M)
EP15:極限、微分和積分次序交換的條件 (https://youtu.be/QRkGLK7Iw4c)
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
向量座標 在 數學老師張旭 Facebook 的最讚貼文
不知不覺許願池計劃已經進到第 7 週了
本週的播放清單如下
週一:二重積分的極座標轉換
週二:冪級數
週三:曲線分析
週四:不定積分與反導函數
週五:向量函數的定義
以下是可以許願的清單
記得只能許願某個重點,不能直接許一整章
若是有人許過你想許的主題
可以按讚也可以再留一次言
若是想買完整課程請到
👉 https://www.changhsumath.cc
【積分(前篇)】
重點一 定積分直觀觀念
重點二 奇偶函數的積分
重點三 定積分正式定義
重點四 積分運算性質
重點五 微積分基本定理 I - 先微再積型
重點六 不定積分與反導數
重點七 雙曲函數
重點八 微分表II
重點九 四大積分基本方法之一:變數變換法
重點十 四大積分基本方法之二:三角置換法
重點十一 四大積分基本方法之三:分部積分法
重點十二 積分表
重點十三 四大積分基本方法之四:部分分式法
【積分(後篇)】
重點一 進階積分技巧:高次倍角三角函數積分
重點二 特殊積分形式之其一:含絕對值的積分
重點三 特殊積分形式之其二:含無窮的積分 (瑕積分)
重點四 微積分基本定理 II - 先積再微型
重點五 旋轉體積分
【數列與級數】
重點一 數列與數列的極限
重點二 數列極限的運算性質
重點三 數列連續化求極限法
重點四 夾擠定理
重點五 單調數列與有界數列
重點六 級數
重點七 級數的運算性質
重點八 級數審斂法一:等比級數
重點九 級數審斂法二:p-級數
重點十 級數審斂法三:比較審斂法
重點十一 級數審斂法四:極限比較審斂法
重點十二 級數審斂法五:比值審斂法
重點十三 級數審斂法六:根值審斂法
重點十四 級數審斂法七:積分審斂法
重點十五 級數審斂法八:交錯級數審斂法
重點十六 絕對收斂和條件收斂
重點十七 冪級數
重點十八 冪級數的運算
重點十九 泰勒級數與泰勒定理
【多變數函數的微積分】
重點一 多變數函數
重點二 二變數函數的極限
重點三 二變數函數極限特殊求法
重點四 二變數函數極限運算定理
重點五 二變數函數的連續
重點六 二變數函數的偏微分
重點七 高階偏微分
重點八 偏微分運算律
重點九 多變數函數的微分量 (全微分)
重點十 方向導數
重點十一 梯度與等高線
重點十二 等值面與切平面
重點十三 相對極值、絕對極值和鞍點
重點十四 拉格朗日乘數法
重點十五 二變數函數的積分:二重積分
重點十六 二重積分的極座標轉換
重點十七 二重積分的應用
重點十八 三變數函數的積分:三重積分
重點十九 柱座標與球座標
重點二十 三重積分的應用
【向量微積分】
重點一 向量函數的定義
重點二 向量函數的極限、連續與微分
重點三 向量函數的積分
重點四 曲線分析
重點五 旋轉體分析
重點六 向量場與保守場
重點七 線積分
重點八 微積分基本定理 for 線積分
重點九 格林定理
重點十 梯度、旋度、散度
重點十一 曲面
重點十二 曲面分析與面積分
重點十三 散度定理
重點十四 史托克定理
以上就是能許願的清單
想看我影片的同學們請在這篇下面許願和投票
統計到本周六晚上 10 點
結果會在本周日晚上公告
然後下周一至五晚上 6 點在我頻道限時首播
向量座標 在 CMmath Youtube 的精選貼文
向量座標化是很重要的一個解題技巧,
幫大家整理8個題目,
大家可以先下載講義練習,
https://lihi1.com/cJulU
在回來搭配影片學習唷!!
想要更完整的課程,請到微補習商店
https://cmmath.com
#平面向量 #座標化
向量座標 在 平面向量-向量座標的表示法說明 - YouTube 的推薦與評價
平面向量- 向量座標 的表示法說明. Watch later. Share. Copy link. Info. Shopping. Tap to unmute. If playback doesn't begin shortly, ... ... <看更多>
向量座標 在 向量座標化題型整理 - YouTube 的推薦與評價
向量座標 化是很重要的一個解題技巧, 幫大家整理8個題目,大家可以先下載講義 ... 想要更完整的課程,請到微補習商店https://cmmath.com#平面 向量 # 座標 化. ... <看更多>
向量座標 在 Re: [理工] [線代] 向量座標化證onto問題- 看板Grad-ProbAsk 的推薦與評價
※ 引述《prosperous (C)》之銘言:
: 我是這樣子想的
: 把向量座標化
: 就好像拿一個函數對這個向量作用一樣
: 所以想請問一下
: 在向量空間取v 基底取r
: [ v ] 是否就代表了 [ ] 為linear,1-1,onto?
: r r
: 意思就是
: 那個把向量轉換成座標的函數
: 是well define, linear, 1-1, onto 嗎?
錯
極座標就不滿足1-1
但是極座標還是一種向量座標化的方式
: 如下圖這樣
:
: 想請問一下問句那樣是不是對的
: 還有觀念如果有不對的地方 還請指正><
: 還想問一下
:
:
: 為什麼這題這樣子就證明了onto啊
: 看不太懂他的解答QQ
題目已經說f是所有的這類函數
所以你想得到的這類函數都是
當然onto
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.199.31
※ 文章網址: https://www.ptt.cc/bbs/Grad-ProbAsk/M.1439484619.A.01E.html
... <看更多>