【中鋼AI現場2:如何靠微米級控制力年省成本千萬?】熱浸鍍鋅AI應用大解密
微米級鍍鋅厚薄如何控制的恰到好處?既要賦予足夠耐蝕性,又要不超量用鋅降成本,秘訣是用AI達成精準生產控制,再用影像辨識找瑕疵,維持鋅層表面品質
文/翁芊儒 | 2021-03-04發表
攝影/洪政偉
生活中隨處可見鍍鋅類產品,凡是有耐腐蝕需求的鋼鐵加工製品,包括作為建材使用的浪板、擔當汽車門面的汽車鈑金、每天都要打開的電冰箱,還有高階電腦伺服器外殼、傢俱、彩色底板、滑軌、風管等等,都可能是運用中鋼的熱浸鍍鋅鋼捲,加工製作而成。
熱浸鍍鋅鋼捲,是中鋼的塗鍍產品中的其中一項,年產量約有87.5萬噸。中鋼軋鋼三廠第二熱浸鍍鋅課課長羅萬福就指出,每一批出產的鋼捲,都需根據中下游客戶需求,客製化調整鍍鋅膜厚,或是進行化成處理,在鋼捲表面進行鉻酸鹽、耐指紋處理等動作,來因應不同加工製品所需的特性。
比如說,部分高階電腦、伺服器的外殼,不會再進行烤漆,而是直接裸用鍍鋅後的鋼片,對這些廠商來說,就會要求鍍較薄的鋅層,才能維持產品表面品質美觀。相對來說,生產建材浪板的廠商,對鋼捲表面品質的要求就較低,而且考量到浪板恐架設在環境不佳的地方,反而要用越厚的鋅層,來製造高耐蝕性的產品。
由於不同客戶要求的鍍鋅模厚都不同(內行說法會用鍍鋅模重,以「公克/每平方公尺」來計),如何精準控制鋅層厚薄,就成為中鋼熱浸鍍鋅廠的一大挑戰。
中鋼技術部門代理副總經理鄭際昭指出,不同產品有不同規格的鍍鋅膜厚,若鍍的太多、高於客戶需求的厚度,由於鋅是高成本的原料之一,就會造成成本的浪費;若鍍鋅層不符合產品規格,又將導致客戶無法使用或加工後續問題,造成品質客訴。「如何控制的剛剛好,讓客戶審核過關,又能省成本,這是我們的目標。」
開發控制鍍鋅膜厚的自動調參AI,年省成本1,600萬元
為了更精準控制鍍鋅膜厚,來減少生產浪費,中鋼用AI開發了控制鍍鋅膜厚的製程調參AI,試圖解決製程中的大量複雜參數,如何影響鍍鋅膜厚的問題。這類製程調參AI,也正是製造業最典型的AI應用之一。
鄭際昭解釋,要將鍍鋅厚度控制的恰如其分,並不容易,因為鍍鋅層厚薄的生產參數,包括氣刀開口大小、與鋼帶的距離、氣刀的氣壓、鋼帶厚度、鋼帶溫度、產線速度等多重變因,都會影響鍍鋅膜厚。
過去,這些複雜參數的調整,都靠老師傅的經驗來人工調參,羅萬福表示,由於不同老師傅之間又有不同的經驗法則,雖然留存了一本本抄滿生產參數的筆記,但後人看不懂也難以吸收,造成經驗傳承的斷層,「這對於面臨員工退休潮的中鋼來說,是很大的問題。」
而且,過去調整完參數後,需要等鋼帶經過100~200公尺的冷卻,才有辦法進行線上鋅層厚度量測,若量測當下發現鋅層過厚或過薄,回頭調整生產參數時,中間就已經多生產了上百公尺的鋼捲,換句話說,從參數調整到成品量測之間,存在冷卻的時間差,「中間多鍍的鋼帶,就會造成浪費。」鄭際昭說。
為了克服這兩大問題,中鋼約從2年前開始投入製程調參AI的研發,先自動化蒐集生產參數,累積上萬筆大數據資料後,建立了一個AI模型,來歸納在不同參數組合下,所造成的鍍鋅膜厚變化。
去年初上線這項應用後,將參數帶入AI模型中,就能即時預測出鍍鋅膜厚,雖然比不上直接量測的數據精準,但是,以此來即時修正生產參數,能避免冷卻期間造成的鋅層浪費,對於鍍鋅膜厚的控制,也比人為設定更準確。
羅萬福指出,傳統人工調參仍然有約20%會失準,但投入AI後,約只有3%結果失準,準確率達到97%左右,更能減少約4.5%的鋅層的浪費。換算下來,一年就能省下1,600萬元的成本,帶來上千萬元的效益。
建立檢驗區瑕疵辨識AI,降低人工目檢負擔
除了鍍鋅膜厚的生產控制面臨挑戰,熱浸鍍鋅廠的另一大難題,則位於檢驗室中,以人工檢測鍍鋅鋼捲的表面缺陷時,具有一定程度的漏檢率。
實際走訪檢驗室,可以了解到員工過去要查驗鋼捲,需要在快速傳輸的鋼帶上,識別出鋼捲表面的缺陷,而且,不只要識別鋼捲單面的缺面,更要透過鏡面反射,同步識別雙面的缺陷,格外考驗員工眼力,「所以我們都找年輕人來看,眼力比較好。」羅萬福笑著說。
但是,人力識別缺陷的方法,仍有其侷限,除了不是所有缺陷都能肉眼識別,人也一定會眨眼,無法不間斷盯著鋼捲檢驗,加上鋼帶一直在動態傳輸,都提升了識別缺陷的難度。羅萬福舉例:「以前比較誇張的狀況,檢驗員還會因為沒有檢查完全,把鋼捲送到處理線慢慢看,但這樣會增加出貨的時間,造成產線的負擔。」
為此,中鋼導入了另一個同為製造業的典型AI應用,訓練出瑕疵檢測模型,透過影像辨識技術,在即時的鋼帶影像畫面中自動標記缺陷的位置、形狀、大小、嚴重程度,抓出缺陷後,再經由人工複查是否確實。換句話說,過去要由人工全檢所有鋼捲的查驗流程,現在能以AI自動辨識來取代,人工只需複查經AI標示出缺陷的鋼帶區域即可,不僅大幅省下查驗人力,更提升了缺陷識別的的準確率。
羅萬福指出:「過去用人工檢驗,會有一定的漏檢率,可能5%~10%,真的很難每一個缺陷都看到。」但在加入AI後,幾乎不再發生漏檢,瑕疵辨識準確率提升到95%以上,進一步提升了鋼捲品質。
人工查驗除了有漏檢的風險,更大的問題,則是在於沒有一套記錄的機制,將鋼帶表面的查驗記錄保存下來。
「以前遇到客戶說,在100公尺的地方有一個缺陷,你們怎麼沒看到?我們就只能認了,因為沒有記錄。」羅萬福指出,沒有記錄機制,就無法得知缺陷到底是發生在自家工廠,還是客戶的工廠中。
但現在,透過AI檢查鋼捲表面,自動標示出缺陷位置與種類後,將這些紀錄留存下來,未來遇到客戶反應類似情形,就能提供當初查驗留存的缺陷地圖(Defect Map),來證明工廠出貨時的品質無虞。
「所以我們不只是導入AI,還把整套記錄建立起來。」羅萬福說。
目前,檢驗區的瑕疵辨識AI已經在去年正式上線,但這項技術,還不足以完全取代人工查驗,除了缺陷處需人工複查,部分非表面瑕疵的缺陷,比如鋼片側面成波狀等形狀缺陷,還是需要靠人眼來識別。
進料區也設瑕疵辨識AI,找出上游廠缺陷鋼捲
除了在後段的檢驗區導入瑕疵辨識AI,中鋼也正在將該技術導入前段進料區。這是因為,部分在後段檢驗到的鋼捲表面瑕疵,可能不是在熱浸鍍鋅廠造成,而是在前一廠區製成鋼捲時,就已經生成。
羅萬福指出,一般來說,鋼品表面的缺陷可能是在傳送鋼帶的過程中,因下方滾輪沾附不明物體,而在鋼帶表面殘留印跡,「不外乎是壓痕、刮痕、或是一些污染,」當發現這些缺陷,就得去找出造成缺陷的來源,並確實清除乾淨,確保下一捲鋼捲的生產過程不會留下缺陷。
然而,在後段檢驗區查驗出缺陷,回頭在製程中查找缺陷來源時,若缺陷並不是在熱浸鍍鋅廠區生成,可能需要花費更多時間來判定缺陷來源。不只如此,熱浸鍍鋅產線從頭到尾大約要經歷2,000公尺的加工運送,若是在前一廠就已經產生嚴重缺陷,原本就不合格的鋼捲,又多進行了近2,000公尺的製程,對鍍鋅原料來說也是種浪費。
「如果可以在進料區就先檢測出來,就能馬上可以判斷,這一捲鋼捲還要不要繼續生產。」羅萬福說。
而且,越早發現缺陷,也能越快通知上游工廠找出生產流程的問題,不只能避免產出更多有瑕疵的鋼捲,快速撤查出同一批生產的瑕疵品,也能減少其他下游廠誤用瑕疵品的可能性。
因此,中鋼正在開發前段進料的瑕疵辨識AI系統,但不是只用於找出缺陷而已,而是要與後段檢驗區瑕疵辨識系統所拍到的畫面,進行整合比對,來檢視前端所發現的缺陷,是否就是造成後段缺陷的原因,藉此建立缺陷演化分析的AI模型。
這個AI模型,能用來判斷進料時不同類型的瑕疵,經鍍鋅製程後是否還會留存下來,當模型越準確,就能判斷前段缺陷的危害程度,來節省更多的浪費。
「這就是我們的產業專業知識,去定義出這個缺陷類型是不是刮痕、這道刮痕鍍鋅後還能不能看得見、這捲鋼捲能不能繼續生產?」羅萬福說。
羅萬福表示,若在後段檢驗區發現鋼捲瑕疵,一噸鋼捲就要損失200美元以上,一捲鋼捲約20噸重,換算成臺幣,就會損失12萬元以上,「能即時找出缺陷,預先判斷要不要繼續生產,就是成本控管的關鍵。」
若用一句話來解釋熱浸鍍鋅方法,就是將鋼捲放入鋅槽,使其雙面都沾附鋅液,讓鋼片表面附著一層薄薄的鋅,能耐腐蝕。不過,實際上要生產出一捲捲數噸的熱浸鍍鋅鋼捲,需要經過一連串複雜的處理流程,先後進入進料區、退火區、鍍鋅區、調質整平區、塗覆區、檢驗區、出料區,才能完成熱浸鍍鋅的作業。
中鋼開發的AI應用,位於生產流程中的進料區、鍍鋅區與檢驗區。在進料區與檢驗區,運用了AI瑕疵檢測技術,來取代部分人工查驗作業,在鍍鋅區,則運用了AI製程調參的技術,找出不同生產條件下的最佳化製程調參作法。
1 進料區:進行的解捲、剪裁、焊接的步驟,先運用解捲機,將入料的鋼捲攤開,剪裁後,再利用焊接機,把兩個鋼捲接在一起,形成一個連續鋼捲,類似於將兩個捲筒式衛生紙的紙面連起來的樣子。
2 退火區:透過溫度變化,達成特定產品所需的機械性質,比如高強度鋼,需要在特定製程條件下才能生產而成。
3 鍍鋅區:鍍鋅區主要配備一個鋅槽,並透過氣刀來將多餘的鋅液刮除,藉此來控制鋅的膜厚(公克/每平方公尺),中鋼可生產單面每平方公尺40~200公克的熱浸鍍鋅鋼捲,越薄的鍍鋅層,用於越高階的產品,也越考驗鍍鋅的技術。
4 調質整平區:運用調質軋延機將剛鍍完鋅的光滑鋼板,依據客戶的需求,加上特定的表面紋路,比如部分要求高粗糙度的鋼板,就會以調質軋延機賦予特殊的表面。
5 塗覆區:在鋼品表面進行特殊處理,比如在用於家電外殼的鋼板上,進行耐指紋處理;又或是在用於抽屜滑軌的鋼板上,塗上高潤滑塗劑,確保鋼板能承受超過一萬次的拖拉。
6 檢驗區:查驗每一捲鋼捲表面是否有瑕疵。檢驗室內設置了鋼捲的垂直檢驗區及水平檢驗區,前者需透過鏡面反射,同步識別鋼捲雙面缺陷,後者則能從不同角度發掘瑕疵。
7 出料區:依據客戶對鋼捲寬度與重量的需求,將鋼捲裁邊修改成特定尺寸,再分捲成不同噸數的鋼捲,或是將鋼捲焊接成超過原尺寸的鋼捲來出貨。
AI瑕疵辨識如何取代人工目檢
作業流程?
實際走訪檢驗室,可以了解到員工過去要查驗鋼捲,需要在快速傳輸的鋼帶上,識別出鋼捲雙面的缺陷。但是,過去的作業流程,存在一定漏檢率,更可能因為沒有檢查完全,把鋼捲送到處理線重複檢驗,而延遲出貨時間,造成產線負擔。(如圖示:人工目檢1、2)
導入AI後,透過影像辨識技術,員工現在已經可以坐在控制室,看系統自動抓出鋼捲表面缺陷,再進行人工複查。如此一來,不僅大幅省下查驗人力,更降低了缺陷識別的漏檢率。(如圖示:AI作法1、2)
除了在檢驗區導入,中鋼也正在開發進料區的瑕疵檢測AI,要提前檢驗出上游鋼廠造成的瑕疵,攔截瑕疵品進入產線加工,來減少鍍鋅原料浪費。(如圖示:AI作法3)
人工目檢1
人工垂直檢驗鋼捲
人工目檢2
人工水平檢驗鋼捲
AI作法1
以攝影機蒐集鋼帶表面影像
AI作法2
系統自動標示缺陷位置與種類
AI作法3
訓練進料區瑕疵辨識AI
附圖:過去得靠老師傅依據經驗法則來人工調參的作法,現在已經看不到了。以前,老師傅需將每一次的參數設定抄寫到筆記中(如圖所示),但現在透過AI,能更精準掌控特定生產參數下的鍍鋅膜厚。(攝影/洪政偉)
圖解熱浸鍍鋅生產流程
攝影-洪政偉
過去要查驗鋼捲,員工需要在快速傳輸的鋼帶上,識別出鋼捲表面的缺陷,且不只要檢查單面,透過鏡面反射,還得同步識別鋼捲另一面的缺陷。圖為垂直檢驗區的實際檢查流程。(攝影/洪政偉)
除了垂直檢驗,查驗人員也需水平檢驗鋼捲,從不同角度發掘鋼捲表面缺陷,比如沖模過程中,可能產生類似於污點的缺陷,即可在此檢驗出來。(攝影/洪政偉)
為了取代人工目檢,中鋼將攝影機裝設在垂直檢驗區的鋼帶底部,也就是圖中綠色雷射光點的位置;拍攝到的鋼帶表面影像,則會顯示到控制室的螢幕畫面中,同步進行影像辨識來查找瑕疵。(攝影/洪政偉)
在控制室內,員工可以直接從螢幕看見鋼捲表面檢查情形,若AI偵測到任何瑕疵,系統會同步標註出缺陷位置、形狀、大小、嚴重程度,提供明確的缺陷資訊,節省人力目檢的負擔。(攝影/洪政偉)
左邊螢幕是檢驗區瑕疵檢測系統,右邊螢幕則是進料區瑕疵檢測系統。目前,中鋼正在開發進料區瑕疵辨識AI,更要藉由與後段瑕疵辨識所拍攝畫面的比對,來建立缺陷演化AI分析模型。(攝影/洪政偉)
資料來源:https://www.ithome.com.tw/news/142941
「鍍鋅鋼板厚度」的推薦目錄:
- 關於鍍鋅鋼板厚度 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於鍍鋅鋼板厚度 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於鍍鋅鋼板厚度 在 漾媽咪快樂購 Facebook 的精選貼文
- 關於鍍鋅鋼板厚度 在 鋼容有限公司《專業安全圍籬加工製造》 - 材質:鍍鋅鋼板厚度 的評價
- 關於鍍鋅鋼板厚度 在 熱浸鍍鋅厚度在PTT/Dcard完整相關資訊 - 小文青生活 的評價
- 關於鍍鋅鋼板厚度 在 熱浸鍍鋅厚度在PTT/Dcard完整相關資訊 - 小文青生活 的評價
- 關於鍍鋅鋼板厚度 在 想請教我們做的鐵屋有問題嗎? (第3頁) - Mobile01 的評價
鍍鋅鋼板厚度 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
AI加值智慧製造 鋼鐵傳產乘浪而起
芮嘉瑋/專欄 2021-01-28 02:45
2020年面對COVID-19(新冠肺炎)的襲擊,疫情籠罩之下各行各業幾乎空轉一年,投資購買設備及原料的腳步也都放緩,預期新的一年,隨著疫情穩定與經濟復甦,許多企業勢必加速添購設備和增加庫存料,鋼材需求可望隨著市場回升而轉強,且至少旺到第2季。
舉例來說,在汽車的構造上,有相當高的比例是使用鋼板,包括車門、引擎蓋、後車箱、底盤、車頂等,所以汽車業的好壞,間接影響了鋼材的需求。這2年汽車上游原材料反應了因電動車興起所展開的換車潮,從而鋼市好轉、鋼價高漲,幾乎各國都是如此。
隨著消費型態轉變,產品生命週期縮短,各行各業面臨客製化的挑戰,並在智慧工廠生產流程的訴求下,往往需要智慧機械、智慧製造設備以從事更複雜的生產工作,鋼鐵傳產業也不例外。然而,現有機器人或製造機台受限於原本功能單一又無法擴充的窘境,必須藉由人工智慧、物聯網、大數據等各種新興技術多元化功能的整合,以利製造業數位轉型升級,因應瞬息萬變的市場挑戰,凸顯「智慧製造」的概念是企業轉型升級的唯一出路。
何謂智慧製造?
經歷4次工業革命的演進,第4次工業革命被視為「工業4.0」,且因智慧製造是工業4.0的核心部件,在製造產業兩者幾乎可劃上等號,從而「工業4.0」常被稱為「智慧製造」。
在工業4.0的時代驅動下,現今製造業不斷與數種新興技術結合,從而工業4.0被定義為「製造技術中整合了網路安全(cybersecurity)、擴增實境(AR)、大數據、自主機器人(autonomous robots)、積層製造(additive manufacturing)、模擬(simulation)、系統整合(system integration)、雲端運算(cloud computing)和物聯網等技術使之具有自動化、聯網、數據交換以及智能工廠所需功能的系統平台」 。
因此,智慧製造實際上需要整合以上所述之各種關鍵領域技術的同步發展以建構出相應的產業生態體系,並在生產過程的每一個環節都能達到高度自動化、客製化與智慧化的先進製造模式,使生產環境具備自我感知、自我學習、自我決策、自我執行以及自我適應的能力,以適應快速變化的外部市場需求。
如何利用AI加持智慧製造
由於智慧製造包括連網(connection)、轉化(conversion)、虛擬(cyber)、認知(cognition)和自我配置(configure)等能力 ,其中利用機器學習、深度學習等AI技術使機器具備自我診斷並即時做出判斷的認知能力,就是AI之所以成為智慧製造核心技術之所在,它可以從大量原始數據中自動提取關鍵特徵及製造業中規律性的模式,進而學習過往曾經發生過的錯誤,以提前作預測及預警,藉此不僅可降低停機時間、提升製程效率,也可適時的根據產線作調整。
至於該如何利用AI加持智慧製造,讓我們看看國內鋼鐵龍頭中國鋼鐵股份有限公司(簡稱中鋼公司),在其智慧生產技術中導入AI實現智慧製造的專利布局,提供製造業者掌握AI加值智慧製造,讓工廠轉型升級邁向智慧工廠。
中鋼發明一種透過人工智慧演算模組在生產製程中進行估測及控制的系統(TWI704019),具體而言,係透過人工智慧演算模組所產生的估測鋼帶翹曲模型對鋼帶翹曲量進行估測,而該人工智慧演算模組係利用機器學習模組、深度學習模組或者使用一雲端伺服器模組評估該製程參數及該翹曲量。
該專利提供一種包含熱浸鍍鋅設備100、矯正機構130、感測模組150、人工智慧演算模組160以及最佳化演算模組165的熱浸鍍鋅鋼帶翹曲量估測系統。其中,該人工智慧演算模組160連接該感測模組150及該熱浸鍍鋅設備110,用以收集且評估該熱浸鍍鋅設備110中諸如產線速度、張力、鋼帶鋼種、鋼帶寬度、鋼帶厚度、鋼帶剛性等製程參數及翹曲量,進而可產生估測鋼帶翹曲模型,且該估測鋼帶翹曲模型包含一矯正干涉量,用以供矯正機構130矯正鋼帶。
經過大量數據的累積,該估測鋼帶翹曲模型還可以包含來自該最佳化演算模組165的製程參數最佳值,當類似或相同的製程參數(例如類似或相同鋼種)的鋼帶需要進行熱浸鍍鋅時,該估測鋼帶翹曲模型就會顯示諸如最佳張力、最佳產線速度、最佳矯正干涉量等製程參數最佳值,供操作者參考,從而獲得翹曲量最少且鍍鋅厚度一致的鍍鋅鋼帶。
再者,由於一般的鋼捲產品需要經過諸如煉鋼、熱軋和冷軋等許多生產階段,為了讓產品的機械性質符合預定的規範,過去往往依賴人為經驗調整生產階段的製程參數,然而,人為經驗難以即時反應生產線狀況,中鋼就此發明一種適用於一軋延系統之製程參數的調控方法(TWI708128),當執行完一部分的生產階段以後,可以即時地計算下一個生產階段的製程參數,其中之製程參數的調控方法包括根據歷史資料建立一機器學習模型,後續並將測試資料輸入至機器學習模型以預測目前產品的機械性質等步驟。
在該專利之軋延系統的運作流程示意圖中,在步驟220,可根據這些歷史資料來建立一個機器學習模型221,此機器學習模型221是要根據生產參數來預測產品諸如拉伸強度、降伏強度和伸長率等的機械性質,換言之在訓練階段中生產參數是作為機器學習模型221的輸入,機械性質則作為機器學習模型221的輸出。機器學習模型221可以是卷積神經網路、支持向量機、決策樹或任意合適的模型。
在步驟230,對目前在線上的產品執行部分的生產階段。在步驟240中,將測試資料輸入至機器學習模型221以預測目前產品的機械性質,並判斷所預測的機械性質是否符合一規範。在步驟250中,依照預設生產參數進行下一個生產階段。
如果步驟240的結果為否,則執行一搜尋演算法以取得最佳的生產參數,並據此實施下一個生產階段(步驟260)。其中,執行搜尋演算法以取得調控後參數的步驟包括:設定一利益函數;將尚未完成生產階段的可調控參數與線上資料合併後輸入至機器學習模型以取得預測機械性質,並根據利益函數計算出預測機械性質的誤差值;以及取得最小誤差值所對應的可調控參數以作為調控後參數。
此外,中鋼亦發明一種設備監診方法(I398629),係在設備故障監診分析流程的邏輯下導入類神經網路(neural network)之人工智慧,以便在決策分析時有效解決故障類型分類方面問題。
給台灣製造業的建議與展望導入AI技術、配合感測器收集各類數據以及大數據分析進行諸如產線異常診斷或品質監控,以維持機器正常運作無虞是智慧工廠有效運作的基礎。然而,智慧製造除了藉由智慧機械建構智慧生產線、透過雲端和物聯網分析資料、AI自主監測診斷調整產線產能之外,虛實整合系統(或稱網路實體系統,Cyber-physical systems)也是構成工業4.0創建智慧製造所需的功能之一,整合物理模型、感測器資料和歷史數據,在虛擬空間即時模擬呈現生產狀態,透過遠程監視或跟踪與工廠現有的資訊管理系統緊密整合,建立完整資訊生態系統才能透過AI即時彙整資訊進行決策。
未來製造業仍將是全球產業不可或缺的一環,隨著工業4.0的蓬勃發展,台灣製造業在邁向智慧製造過程中,所有智慧化的步驟都需要運用AI來執行分析、診斷、預測或決策等工作,欣見國內鋼鐵龍頭已率先落實AI加值智慧製造,然而若能整合虛擬(Cyber),強化與工業物聯網之整合,更可提升透過AI提高組織運作效率及效能的目的。
過去製造業藉由大量生產與低價競爭已非決勝關鍵,如何協助國內產業在後疫情時代轉型升級,是當前的重要議題。持續強化在地製造業與資訊業領域的技術整合優勢,透過機器學習、類神經網路或深度學習等AI技術的導入,並與使用者/消費者連結形成完整的製造服務體系,將可望從傳統製造體系中依賴人為經驗、人力需求及規格一致的常態,轉換為自動化、客製化、智慧化和靈活彈性化的智慧製造。本文以鋼鐵龍頭之典範轉移為例,以期台灣所有製造產業均應具備智慧製造的軟硬實力,才能持續在全球製造體系中發光發熱。
附圖:鋼帶翹曲量估測及控制系統結構示意圖。芮嘉瑋
台灣專利號I708128之軋延系統的運作流程示意圖。芮嘉瑋
資料來源:https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&cat=140&id=0000602586_r1c6gnef7wl2247ink60m
鍍鋅鋼板厚度 在 漾媽咪快樂購 Facebook 的精選貼文
事半功倍的廚房必備👍
日本Peconic美型旋風氣炸鍋
團購連結➤ https://gbf.tw/z6rtg
分享文➤https://bit.ly/36GbZcR
廠商問我「剩下微量庫存有沒有興趣再開團」?
我馬上說「要,請留給漾媽咪粉絲」
BUT~~ #這團只有最後100台‼
賣完就沒有囉
上momo或pchome也買不到
最後數量了🙋♀有需要快搶了喔
------------------------------------------
漾媽咪獨家優惠
➊ 氣炸鍋本島免運費!
➋ 限量100名!買氣炸鍋即贈原裝西班牙橄欖油*1罐+日本低醣質大豆麵*1包
------------------------------------------
夏天在廚房煎煮炒炸
煮一頓下來都滿頭大汗了
媽媽根本沒有食慾 (癱軟)
因為家裡是開放式廚房
之次煎小孩最愛的鮭魚、雞腿排
即使排油煙機已經切到最強吸力了
客廳還是免不了瀰漫油煙食物味
煮完還要開後門通風半小時才散的去
爐台已經被油炸的亂七八糟
實在好討厭油漬,沒清乾淨很容易引來蟑螂
所以煮完我都要擦好久
老公說我這樣跟大掃除沒兩樣😅
你跟我一樣討厭油膩膩
又渴望變出各式料理嗎?
少油、少油煙、好清洗、不需要預熱
我覺得是氣炸鍋的最終價值!!
完全將噴油濺油的事交給氣炸鍋就好
再也不用苦惱煎條魚還要大掃除廚房和爐台
氣炸後,只需要清洗炸籃就可以了👏
過程也不用一直站在爐台前哈燒氣
也能減少吸進油煙傷身體
一般我會鋪一層烘焙紙在大炸籃和小炸籃中間
把食材平均鋪放在小炸籃上
炸籃推進去 (像抽屜一樣關起來)
再將氣炸鍋的溫度和時間設定好
就可以去滑手機等"噹"了
有些食材我不會翻面
鮭魚、雞腿排、雞胸肉、海鮮煎餅
直接讓它一鏡到底
鮭魚180度20分鐘
雞腿排170度25分鐘
雞胸肉170度15分鐘
海鮮煎餅180度10分鐘
沒錯!噹了就直接盛盤
雞翅因為翅和棒棒腿的兩邊厚度不同
所以我會分兩次氣炸
第一次180度10分鐘翻面後再180度15分鐘
就能獲得皮脆超啾西的肉質
而且油都滴到下層炸籃中了
多少還是會有減油的效果
我覺得吃起來就是會清爽很多
重點是我只需要清洗炸籃
蚊香我都用mamacore酵素粉稀釋噴一噴再擦拭
除油脫汙效果超棒
真的輕鬆超多的
我家很愛吃鮭魚、鯖魚
可是平底鍋煎完整屋子都是油味
還要經歷被油噴炸的酷刑
現在有了氣炸鍋,想吃隨持炸給你吃!
再也沒有油煙味✌媽媽的手不再被熱油燙傷囉
#推Peconic值得勸敗的9個理由:
➊外型簡約時尚
拉絲紋不鏽鋼飾板,白冷光旋鈕提示燈,簡單耐看的設計
➋超大容量5公升,雙炸籃設計
業界數一數二的大容量,能夠滿足大家庭,氣炸全雞也OK
➌炸籃採用鍍鋁板,產品通過SGS檢驗
鍍鋁板是鋼板表面鍍鋁 (防銹作用及耐高溫650度),更耐高溫,且抗氧化耐腐蝕性很強,壽命至少比鍍鋅板延長60%,炸籃使用成本較高的鍍鋁板+可食陶瓷塗層,全機通過SGS檢測,安心料理的選擇
➍炸籃側邊開洞設計,烹調時受熱更均勻
➎比一般傳統油炸料理減少80%油脂,健康又美味
➏不需預熱!!! 冷凍食品不需退冰,就能直接氣炸料理
➐採用機械式旋鈕,耐用性更高
➑散熱孔設計於後方,烹飪時不易被高溫氣體燙傷
➒氣炸功能完整、可設定溫度、時間、價格合理好入手
建議如果長輩每天都會煮
可以買一台送長輩減少接觸大量油煙的機會
也減少站在爐前顧火的時間
氣炸的同時可以去做別的事情
老人家也輕鬆一點
錯過不再有
有需要就趕快來填單了唷
團購連結➤ https://gbf.tw/z6rtg
鍍鋅鋼板厚度 在 熱浸鍍鋅厚度在PTT/Dcard完整相關資訊 - 小文青生活 的推薦與評價
提供熱浸鍍鋅厚度相關PTT/Dcard文章,想要了解更多鍍鋅量z27、鍍鋅鋼板單價、鍍鋅鋼板厚度有關歷史/文化文章或書籍,歡迎來小文青生活提供您完整相關訊息. ... <看更多>
鍍鋅鋼板厚度 在 熱浸鍍鋅厚度在PTT/Dcard完整相關資訊 - 小文青生活 的推薦與評價
提供熱浸鍍鋅厚度相關PTT/Dcard文章,想要了解更多鍍鋅量z27、鍍鋅鋼板單價、鍍鋅鋼板厚度有關歷史/文化文章或書籍,歡迎來小文青生活提供您完整相關訊息. ... <看更多>
鍍鋅鋼板厚度 在 鋼容有限公司《專業安全圍籬加工製造》 - 材質:鍍鋅鋼板厚度 的推薦與評價
材質:鍍鋅鋼板厚度:0.3~0.4 溝型:一般溝. ... <看更多>