朋友們,請看清楚囉~~~
魔鬼藏在細節中。..... 在同一時段、同樣的天候下,在同一地理區域中,離岸風力發電的發電效率,就是會比陸域風力發電來的優異一大截。
台灣目前總共擁有840.2MW規模已經正式商轉併聯發電的風力發電機組(其中712.2MW為陸域風力機組,128MW為離岸風力機組),目前正在進行施工中的風力機組,光是離岸風電機組,今年的數量就超過805MW規模,預計今年夏季可以有兩座合併規模達557MW。
以今天05/16/2021 晚間10:50PM時段的台灣風力發電即時發電狀態為例。
當時全台灣的風力機組總共發出94.20MW的電力,當時所有風力機組的平均發電效率為11.21%。
但是當我們仔細檢視苗栗縣境內的風力發電機組的實際運轉狀態時,卻可以發現,目前台灣第一座正式商轉併聯發電的離岸風場,上緯海洋竹南離岸風場的僅僅22座離岸風力機組(4MW機組x2再加上6MW機組x20),就發出了41.2MW的電力,平均機組的發電效率達到32.19%,遠遠高於當時段的全台灣風力機組的平均發電效率11.2%。在該時段總共風力發電的94.20MW電力產出當中,就佔了43.7367%的發電量佔比。
那幾乎是22座離岸風力機組發電量等同於超過300座陸域風力機組總發電量的意思呢!
相較之下,同樣位於苗栗縣的沿海海岸線上,陸域風力機組的發電實績相形就遜色不少。我們由北到南一陸域風場所處區域來看看當時段的運轉績效:
崎威崎頂風場發出0.9MW電力,運轉效率13.04%
苗栗竹南風場發出1.0MW電力,運轉效率12.82%
苗栗大鵬風場發出6.5MW電力,運轉效率15.48%
龍威後龍風場發出5.9MW電力,運轉效率13.36%
東鋼龍港風場發出3.1MW電力,運轉效率26.96%
苗栗通苑風場發出3.2MW電力,運轉效率8.18%
再來看一次,同樣位於苗栗縣竟,距離海岸線2~4公里處近海海域的海洋竹南離岸風場在當時段的實績:
海洋竹南風場發出41.2MW電力,運轉效率32.19%
此外,這是 2021-05-17 0100AM 苗栗地區離岸風電 VS. 陸域風電的即時發電狀態。在這個當陸域風力機組普遍使不太上力的時段,離岸風力機組的發電效能優勢,就更加的明顯了。提供大家做進一步的參考。
在2021-05-17 0100AM時段,位於苗栗縣境內的風力各場域發電機組的實際運轉狀態:
當時全台灣的風力機組總共發出133.40MW的電力,當時所有風力機組的平均發電效率為15.88%。
但是當我們仔細檢視苗栗縣境內的風力發電機組的實際運轉狀態時,卻可以發現,目前台灣第一座正式商轉併聯發電的離岸風場,上緯海洋竹南離岸風場的僅僅22座離岸風力機組,就發出了73.7MW的電力,平均機組的發電效率達到57.58%,遠遠高於當時段的全台灣風力機組的平均發電效率15.88%。在該時段總共風力發電的133.40MW電力產出當中,就佔了55.2473%的發電量佔比。
那基本上就是22座離岸風力機組發電量等同於超過台灣目前現有的300多座陸域風力機組總發電量的意思呢!
相較之下,同樣位於苗栗縣的沿海海岸線上,陸域風力機組的發電實績相形就遜色不少。我們由北到南一陸域風場所處區域來看看當時段的運轉績效:
崎威崎頂風場發出0.4MW電力,運轉效率5.8%%
苗栗竹南風場發出0.6MW電力,運轉效率7.69%
苗栗大鵬風場發出6.2MW電力,運轉效率14.76%
龍威後龍風場發出6.8MW電力,運轉效率15.42%
東鋼龍港風場發出1.8MW電力,運轉效率15.65%
苗栗通苑風場發出2.7MW電力,運轉效率6.91%
再來看一次,同樣位於苗栗縣竟,距離海岸線2~4公里處近海海域的海洋竹南離岸風場在當時段的實績:
海洋竹南風場發出73.7MW電力,運轉效率57.58%
其實,當風況良好的季節中,例如每年10月份至隔年的三、四月份,無論離岸風機或是陸域風機,都可以發好發滿,是風力發電的旺季。
但是在每年五至九月份的這段風況微弱或者是普通的傳統風力發電的淡季中,在一般風速達到每秒三公尺的最低啟動風速之後,離岸風力機組的發電效率,就明顯的優於處於同一區域中的陸域風力機組。
此外,離海岸線越遠,風況通常越佳。風力機組裝置容量越大,發電效率越佳。
以目前海洋竹南離岸風場所採用的離岸機組的款式,分別是4MW x2 再加上 6MW x20。
今年正在興建中的離岸風場,除了109.2MW規模的台電離岸一期風場,採用5.2MW級距的風力機組,發電功率應該略等同於海洋竹南的6MW級距機組。其餘的離岸風場所採用的風力機組,基本上都升級到8MW級距的離岸風機了。
根據西門子原廠的計算,安裝在同樣的風場中,其8MW等級離岸風力機組的年發電量,會比前一代6MW級距的離岸風力機組的年發電量,高出20%!
2022年開始的台灣離岸風場,將會出現10MW級距的離岸風力機組。按照西門子原廠的測試數據顯示,10MW級距的機組的年發電量,又會比8MW級距機組高出達40%之多!
2024年開始的台灣離岸風場,將會跨入到14MW級距的離岸風力機組的天下,西門子原廠的數據指出,14MW級距機組的年發電量,又將會比其前身11MW級距機組的年發電量高出25%之多!
就是因為這樣微妙的運轉效率差異性,在今年開始,當離岸風力機組逐年大量的加入並網商轉發電之後,台灣風力發電將呈現截然不同的的樣貌。往後的日子中,每年離岸風電都平均以1GW~1.5GW規模的速度,持續的成長,引此,連帶的,台灣的風力發電的發電量以及發電量佔比勢必呈現巨幅的成長。
PS. 目前最新的資料顯示,台灣每發出一度電力,平均的二氧化碳排放量為0.509公斤。因此,只要增加一度再生能源發電(水力、風力、太陽能光電、地熱發電、海洋能發電等等不同型態的再生能源都是)我們就可以幫台灣,以及我們的地球減少0.509公斤的二氧化碳排放量,期間也完全不會產生任何溫室效應氣體的排放,也不會有任何有害廢氣的產生。
此外,高度仰賴國際貿易為經濟主軸的台灣產業界,目前紛紛在各大供應鏈體系的督促下,宣示要逐步達成整格生產營運所需用電,都要轉換成100%以再生能源綠電來供應。而這裡所講的再生能源綠電的定義非常明確的就是風力發電、太陽能光電、地熱發電、海洋能發電等狹義的再生能源發電,有些嚴苛的標準中,甚至連再生能源項目中的水力發電,都不被認可符合「綠電(Green Power)」的標準。(【台積電與華碩敲響警鐘】百家台廠無綠電可用,政府在等什麼?:https://tw.appledaily.com/....../E6GYNFIYAZFCHDVDA5WSIEEK4E)
另一方面,核電會產生輻射污染以及各種放射性輻射廢棄物,在處理上極度困難,動輒需要採用地底深層掩埋的方式,與外部環境隔離貯放上數萬年的時間,一般來說,人類無法保障任何人造物件的安全貯放能撐得過萬年之久,坦白說,人類自有文字歷史紀錄以來的時間,也還沒有超過一萬年,目前可考的,大約都在5千年上下。此外,更重要的是,台灣本身的地質條件很特殊,台灣島本身正位於歐亞大陸板塊以及菲律賓海板塊的碰撞擠壓隱沒帶正上方,另外也同時處於環太平洋火山地震帶之上,終年大小地震不斷,根本不適合發展核電。世界上唯一有類似台灣這樣處於地震不斷的地質條件上興建核電廠的國家,就是日本,而人家在2011年已經發生過311福島核災,至今十年過去了,核災善後情況如何,已經豁了多少核災善後費用,大家心知肚明,就不用提了。
就不用提,核電廠還有高溫廢水排放造成水體以及環境熱汙染的生態負面影響。萬一出事,就像日本福島核災的現況那樣,放射性輻射廢水的處理也是非常棘手難你妥善解決的難題。
我們現在生活的環境,已經不是工業革命之前的17、18世紀農業時代的環境了,在經過一百多年來的過度開發,我們在21世紀所面臨到的全球暖化、氣候變遷問題,讓我們必須實事求是地用新的視野、新的方式來找出最即時也最適用的解決方案,以便讓我們在整個地球生態環境還來得及被拯救回來的關鍵緊要生死關頭。
目前台灣正在積極地推動各種型態的再生能源發電,但同時,整府也制定了一整套審核機制,與民間的環境保護組織、在地社區、公民團體一起監督、管制再生能源開發不致於影響到重要農地、漁場的完整性。目前光電准許開發的場域,都集中在不利耕種、地層下陷的地帶,或者是農牧設施屋頂,養殖漁業用地的多功能運用等等範疇。至於離岸風電的後續開發,經濟部也剛剛公佈的離岸風電第三階段區塊開發的草案,已經展開與漁業族群、環保團體、在地社區、開發商、本土產業供應鏈、相關產業界、學界與政府跨部會單位等等相關領域的滾動式對話、協商與落實執行。
♡
#離岸風電
#陸域風電
#風力發電
#再生能源
#能源轉型
#減碳減排
#全球暖化
#氣候變遷
同時也有1部Youtube影片,追蹤數超過4萬的網紅Dd tai,也在其Youtube影片中提到,葛洲壩水利樞紐,被譽為「萬里長江第一壩」,是長江幹流上第一座大型水利樞紐,位於中國湖北省宜昌市境內的長江三峽末端河段上,距上游的三峽水電站38公里,距下游宜昌市主城區約6公里。因壩址處江中原有一小島葛洲壩而得名。」大壩位於長江三峽的西陵峽出口—南津關以下2300米處,距宜昌市鎮江閣約4000米。北抵...
二氧化碳發電機組 在 報時光UDNtime Facebook 的最佳解答
【729全臺大停電】 #你還記得嗎
1999年的一個夏日夜晚,許多原本正在冷氣舒眠下的人漸漸熱醒,窗外的城市淨是一片漆黑,如此大範圍的停電,頓失消息來源的人們開始各種不安的猜測。
「聽說桃園的煉油廠爆炸了?」
「是核能發電廠出現意外嗎?」
「難道兩岸戰爭已經展開了?」
然而當這次產業損失至少數十億元的大停電調查清楚後,卻發現僅僅是因為一座高壓電塔的倒塌。
因區域電力供需不平衡的關係,臺灣長期依賴南電北送,卻僅有兩路超高壓輸電幹線,由於其負載率過高,一旦發生意外,便無法互相協調支援。
臺電雖早已預見問題努力推動第三迴路的建設,卻因用地取得困難、長期受到地方民眾抗爭,而使得計畫不斷延宕,在各種結構性問題的連鎖反應下,最終導致了729的全臺大停電。
729大停電彷彿敲響了人民心中的警鐘,在輿論的支持下,臺電終於加速在2002年完成了第三迴路的相關建設,但隨著經濟產業快速發展,臺灣的用電量及能源需求持續升高,民眾「要電不要廠」的心態若不改變,歷史恐將一再重演。
#能源問題是通盤考量
#所有方案皆有其利弊得失
#報時光UDNtime
來源:聯合報
日期:1999/7/29
攝影:林秀明
圖說:昨晚全台大停電。
歷史新聞
【1999-07-30/經濟日報/01版/要聞】
全台灣 大停電
新竹園區損失至少數十億元 近千萬戶受影響
【本報綜合報導】昨(29)日深夜11時15分許,台灣地區發生罕見的大規模停電,除高屏少數縣市外全部停電,近一千萬戶受影響,新竹科學園區也因瞬間降壓斷電而損失慘重,初估損失至少數十億元。
昨夜停電原因眾說紛云,可能原因有輸配電系統發生重大故障、變電所爆炸等,台電公司昨晚緊急調查原因,但至截稿為止,仍無法明確對外公布。
昨晚11時過後,北部、中部、東部及嘉義、雲林等地瞬間停電,頓時全省一片漆黑,稍晚台中、高雄恢復供電,其它地區仍未恢復。台電公司目前以調度搶修為首要任務,全省警力也立時動員警戒,全省交通大亂,高速公路林口以南全面封鎖禁行。
受瞬間降壓影響,高科技產業集中的竹科全部斷電,半導體、光電等工廠因必須24小時運轉,所有製程內、爐管內半成品都將因此報廢,廠商損失慘重。
【1999-07-31/經濟日報/02版/大停電特別報導】
大規模停電凸顯的當前電力供應問題
【社論】台灣地區29日深夜發生歷來最大規模的停電事件,全島除了高雄、屏東、台南等地區,都陷入停電狀態,約八、九百萬用戶無電可用,連機場、鐵道、醫院等停電敏感地區都一度斷電。產業損失更難估計,顯現這次大規模停電的嚴重性。引發這次大停電的原因是台南關廟山崩,導致台電公司高壓鐵塔傾斜,造成龍崎至嘉民海線、龍崎至中寮山線間的輸電線跳脫,並引起連鎖反應。這次停電事件看似意外事故,實際卻是台灣電力供應系統的根本結構性問題使然,值得深究。
這次停電凸顯的第一個結構性問題是區域電力供需不平衡。根據台電公司的統計,目前台灣地區含民營電廠的電力總裝置容量為2,749萬瓩,位於桃園龍潭以北的電廠有核能一、二廠及協和火力、林口燃煤、翡翠水力等機組,裝置容量約690萬瓩,僅約占總供電能力的25%。但是,北部地區是政治、金融及商業發展中心,電力需求大,用電量約占全台灣的45%以去年的統計為例,北部地區的最高負載約1,075萬瓩,但淨尖峰供電能力僅約665萬瓩,不足的410萬瓩電力都需由中南部經輸配電送來。
這種南電北送現象已存在多年,隨著經濟持續的發展,北部地區對南電的依賴愈來愈高。台電統計,南電北送的電力今年以來漸增,7月下旬已達440萬瓩,因而逼近現有輸配電系統的最大輸電能力470萬瓩,北中第一、二路超高壓輸電線負載率並首度超過90%,較合理負載率75%高出甚多。這種情況顯示不僅北部地區供電吃緊,也反映輸配電系統的負載率持續偏高,將相對增加系統設備的故障率,一旦發生事故,兩條輸電大動脈將因負載偏高而無法相互支援,就會爆發像前天深夜一樣的大範圍停電現象。這是當前電力系統存在的第二個結構性問題。
第三個問題是我國電力備用容量率長期低於合理的25%水準,今年大約在12%、13%間,表示電力供應只是大致夠用,難以應付突發的狀況,例如需求激增或機組故障。因此,每當進入夏季尖峰用電時期,台灣地區民眾就得面臨可能限電的壓力。然而,儘管電力備用容量率長期偏低,在環保抗爭、安全考慮等情況下,台電公司卻不易增設新的發電廠。近十年來,台電都是在現有電廠中加裝發電機組,因而供電能力成長有限。
這三大結構性因素使得台灣的供電系統相對脆弱,一旦遇有突發事故,台電的應變就顯得捉襟見肘。為此,台電已採行因應措施,例如興建南北第三路超高壓輸電線,不僅寬解北部地區供電壓力,並減輕現有二路輸電主幹線的負載,提高相互支援及應變能力。另一方面,台電也積極興建大潭液化石油氣發電廠及核能四廠,以增加北部地區發電機組,減少對中南部電力的依賴;此外,目前已開放設立的民營電廠,更優先選擇在北部設廠者。
這種種努力並沒有獲得完全的支持,例如南北第三路超高壓輸電線,就面臨部分路段民眾抗爭的困難,以致原定民國85年應完工的第三路輸電線,卻至今仍在進行中;核四的興建更是風風雨雨,儘管立法院已通過興建預算,至今仍然面臨反核團體的干擾,甚至可能無法取得地方政府的許可,以致完工時日遙遙無期。民眾「要電不要廠」的心理一直存在;核電廠的興建是見仁見智,一向是國際性的爭議;燃油、燃煤等火力電廠的擴建,其所排放的大量二氧化碳,將受氣候變化綱要公約的管制;興建對空氣汙染程度較低的液化石油氣發電廠,民眾就須接受電價調漲的事實;如果放任現況不管,就是由台灣經濟付出代價,企業界得隨時準備承受限電、斷電、停電之苦。
天下沒有白吃的午餐,每一種解決方案都會帶來利弊互見的影響,應對之道當是權衡輕重緩急,選擇最適方案。台電的危機處理能力及效率一定有提升及改善的空間,但關鍵還是在於這三大結構性問題必須及早解決,才能真正提高台灣電力系統的供電穩定性。因此,政府相關單位應儘速在考量環保、能源及安全等原則下,訂出明確的電力政策,並發揮公權力,全力執行,及早改善台灣經濟發展的基礎環境。
二氧化碳發電機組 在 吳崢 Facebook 的精選貼文
藻礁公投今天正式送件,連署書有70萬份,我知道身邊許多平常一起罵國民黨的朋友這次也決定要支持藻礁公投,「生態只有一次,破壞就沒了」,有人跟我這樣說。
「要不要保育藻礁?」聽起來像一句廢話,保育啊哪次不保育,如果到街上問人「要不要環保?」、「阻止地球暖化好不好?」大概十個人裡也有九個人會說好,環保意識成熟和普及了,這是好事。
不過,這次的天然氣第三接收站vs藻礁公投,比起單純的環保與否其實要來的更複雜一些,有些資訊或許朋友們不一定有跟到,我想簡單和你們分享一下。
*
台灣發電主要就靠幾種方式:燒煤、燒天然氣、核能、再生能源。其中燒煤會產生PM2.5和空汙、核能則有核安和核廢料處理問題,而燃燒天然氣則只會產生二氧化碳與水蒸氣,相較下較為乾淨。
所以未來台灣的能源發展方向,理想上應該朝逐步汰換燃煤及核能電廠,以燃氣電廠與再生能源為主力的模式發展,這也是目前政府與環保團體的共識。
以2020年來看,台灣的發電比例中:
燃煤45%
燃氣35.7%
核能11.2%
再生能源5.4%
現在政府的目標則是要在2025年,把結構拉到:
燃氣50%
燃煤27%
再生能源20%
核能1%
很明顯,為了達成「非核減媒」,台灣接下來數年要面對巨大的能源結構轉型,這本身就已經是個艱鉅的任務。現在全台灣只有兩座天然氣接受站,「一接」在高雄永安、「二接」在台中港,目前興建中的「三接」,對接下來的核電廠除役、減少燃煤發電有著非常重要的關鍵影響。
電力的需求短時間內是剛性的,甚至還有可能成長,如果要減少核能發電、減少燃煤發電,那勢必要增加天然氣的發電機組、接受站與儲存槽。這是一翻兩瞪眼的事。
藻礁保存和天然氣接受站間的平衡,我承認真的是很困難的題目,這是為什麼蔡英文總統會說這是「環保與環保的抉擇」。
*
距離公投還有幾個月,我不會叫各位朋友現在就馬上改變心意,但這些客觀的數字,希望能提供你們參考看看。
二氧化碳發電機組 在 Dd tai Youtube 的最佳貼文
葛洲壩水利樞紐,被譽為「萬里長江第一壩」,是長江幹流上第一座大型水利樞紐,位於中國湖北省宜昌市境內的長江三峽末端河段上,距上游的三峽水電站38公里,距下游宜昌市主城區約6公里。因壩址處江中原有一小島葛洲壩而得名。」大壩位於長江三峽的西陵峽出口—南津關以下2300米處,距宜昌市鎮江閣約4000米。北抵江北鎮鏡山,南接江南獅子包。長江水流由東急轉向南,江面由390米突然擴寬到壩址處的2200米。由於泥沙沉積,在河面上形成葛洲壩、西壩兩島,把長江分為大江、二江和三江。大江為長江的主河道,二江和三江在枯水季節斷流。工程上游流域面積約100萬平方公里,多年平均流量14,300立方米/秒,水庫總庫容15.8億立方米(三峽大壩水庫393億立方米)。安裝發電機組21台,總裝機容量271.5 萬千瓦(三峽2,250萬千瓦),投產後,通過擴建一台機組和實施兩台機組改造增容,現裝機容量為277.7萬千瓦,年均發電量157億度。 工程自1970年12月30日動工,1988年12月10日竣工,1989年1月3日,長江葛洲壩水利樞紐宣布建成。
長江三峽水利樞紐工程,常簡稱三峽工程或三峽大壩,是中國長江上游段建設的大型水利工程項目。分布在重慶市到湖北省宜昌市的長江幹流上,大壩位於三峽西陵峽內的宜昌市夷陵區三斗坪,並和其下游不遠的葛洲壩水電站形成梯級調度電站。它是世界上規模最大的水電站,是中國有史以來建設的最大的水壩。三峽水電站的機組布置在大壩的後側,共安裝32台70萬千瓦水輪發電機組,其中左岸14台、右岸12台、右岸地下6台,另外還有2台5萬千瓦的電源機組,總裝機容量2,250萬千瓦,年發電量約1,000億千瓦·時,相當於計熱電發電效率後燃燒標煤0.319億噸的發電量,年直接減排二氧化碳0.858億噸。而它在發電、防洪及航運方面帶來巨大利益的同時,附帶引起的移民、環境等問題,使它從開始籌建的那一刻起便始終與繁雜的各種爭議相伴。三峽工程的總體建設方案是「一級開發,一次建成,分期蓄水,連續移民」。工程共分三期進行,總計需17年,目前已經全部建成。
一期工程從1993年初開始,利用江中的中堡島,圍護住其右側後河,築起土石圍堰深挖基坑,並修建導流明渠。在此期間,大江繼續過流,同時在左側岸邊修建臨時船閘。1997年導流明渠正式通航,同年11月8日實現大江截流,標誌著一期工程達到預定目標。
二期工程從大江截流後的1998年開始,在大江河段澆築土石圍堰,開工建設泄洪壩段、左岸大壩、左岸電廠和永久船閘。在這一階段,水流通過導流明渠下泄,船舶可從導流明渠或者臨時船閘通過。到2002年中,左岸大壩上下游的圍堰先後被打破,三峽大壩開始正式擋水。2002年11月6日實現導流明渠截流,標誌著三峽全線截流,江水只能通過泄洪壩段下泄。2003年6月1日起,三峽大壩開始下閘蓄水,到6月10日蓄水至135米,永久船閘開始通航。7月10日,第一台機組併網發電,到當年11月,首批4台機組全部併網發電,標誌著三峽二期工程結束。
三期工程在二期工程的導流明渠截流後就開始了,首先是搶修加高一期時在右岸修建的土石圍堰,並在其保護下修建右岸大壩、右岸電站和地下電站、電源電站,同時繼續安裝左岸電站,將臨時船閘改建為泄沙通道。2006年5月20日三峽大壩主體部分完工。2009年年底全部完工。
都江堰是中國古代建設並使用至今的大型水利工程,位於四川省都江堰市城西,岷江上游340公里處。都江堰是由戰國時期秦國蜀郡太守李冰及其子於約前256年至前251年主持始建的。經過歷代整修,兩千多年來都江堰依然發揮巨大的作用。都江堰周邊的古蹟甚多,主要有二王廟、伏龍觀、安瀾橋、玉壘關、鳳棲窩和鬥犀臺等。整個都江堰樞紐可分為堰首和灌溉水網兩大系統,其中堰首包括魚嘴(分水工程)、飛沙堰(溢洪排沙工程)、寶瓶口(引水工程)三大主體工程,此外還有內外金剛堤、人字堤及其他附屬建築。都江堰工程以引水灌溉為主,兼有防洪排沙、水運、城市供水等綜合效用。它所灌溉的成都平原是聞名天下的「天府之國」。1980年7月7日列為四川省重新確定公佈的第一批省級文物保護單位。1982年2月24日公佈為第二批全國重點文物保護單位[2]。2000年,都江堰以其為「當今世界年代久遠、惟一留存、以無壩引水為特徵的宏大水利工程」,與青城山共同作為一項世界文化遺產被列入世界遺產名錄。