本周專欄,一樣講國一數學,預計分上下兩篇
===================
中學以下的素養教育與經驗談:一元一次方程式(上)
質因數、因倍數跟分數四則運算還好,小學夠熟的話,這邊大概問題出在練習不夠,或是遇到應用題轉不過來。家長請用筆者之前提過的方法,要求小朋友遇到應用題,口說解釋題意,你會知道他哪邊弄不清楚。若問題是在語文能力,就只能多讀多看多寫了;計算能力不佳,就透過計算簡單但數量多的題目來練反應。
再講一次,中等程度的學生,筆者從沒見過不練習,就自然而然會的。隨便寫寫就會的,程度至少都中上以上,換PR比例是超過80,別以為這好像很差,意思是10個同學裡面只有2個可以。
你確定家裡的寶貝是嗎?
自己在家教小朋友沒有面子問題,請不要死不承認自家小孩程度真的不好,會被害死的是小孩,不是爸爸媽媽。
[數學不再只是算術──掌握數學語言]
進入一元一次方程式後,主要有三點要注意,一個不小心會牽連到往後的二元一次聯立、一元二次方程式。簡單說就是,高中數學要投降吧。
1. 徹底理解一元、一次,方程式的意義
2. 怎樣解題
3. 如何看懂及設計應用題
一元一次方程式的定義,課本一定會教。一元指的是未知數只有一個,一次指的是指數只會是1,不會有2次出現。方程式的意思很多,在國中來說只會講到恆等式,所以小國一只要讓他知道「多數情況下,方程式代表一個等號,兩邊要相等」的概念就好。
用範例來說
x+1 = 2
2x+2 = x+1
2x+1 = 5
家長一定要問,問到學生可以表達「第一個式子意思是,等號左邊有一個未知數X,加上1後會等於2」,能到這種程度,才算是可以理解方程式的定義。千萬記得要力求正確,不要呼嚨過去「就一個不知道是多少的,加上1後會有2嘛」,這在表達一元一次還好,二次式後面就開始會昏。(按:未知數的含義及運用遠遠大於「某個特定數字」的概念,因此後者僅是就算術的邏輯在理解,並未開始掌握數學語言)
雖說我們目的不是要培養數學家、科學家……但是,
「數學不是算術」。
=====================
全文請至方格子專欄閱讀https://vocus.cc/eoiss/60c8defdfd8978000162c8df
同時也有39部Youtube影片,追蹤數超過8萬的網紅賭Sir【杜氏數學】HermanToMath,也在其Youtube影片中提到,杜氏數學 國際官方網站 http://www.hermantomath.com ---------- Title: 被莊家永遠隱藏的機率原來很易計? ---------- Subtitle: 一張凳、一本簿、一枝筆,便可以簡單運算? ---------- Script: 要知道某投注方法會否為你...
「分數與小數的計算應用題」的推薦目錄:
分數與小數的計算應用題 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改
人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警
2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室
本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。
長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。
據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。
立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。
由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。
其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。
另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。
根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。
背景知識說明
本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。
由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。
何謂人臉辨識
人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。
目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:
‧ 普遍性:屬於任何人皆擁有的特徵。
‧ 唯一性:除本人以外,其他人不具相同的特徵。
‧ 永續性:特徵不易隨著短時間有大幅的改變。
‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。
‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。
人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。
人臉辨識的步驟
人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。
人臉偵測
基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。
Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。
人臉的預處理
偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:
‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。
‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。
‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。
人臉特徵摘取
關於人臉特徵摘取,相關的技術說明如下:
‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。
‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。
‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。
何謂酒精鎖
酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。
根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。
在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。
許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。
對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。
認識區塊鏈
區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。
區塊鏈的原理與特性
可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。
關於區塊鏈的特性,可分成以下四部分做說明:
1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。
2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。
3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。
4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。
區塊鏈與酒精鎖
由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。
酒駕防偽人臉辨識系統介紹
為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。
在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。
如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。
區塊鏈打包上鏈模擬
在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。
要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。
將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。
情境演練說明
話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。
已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。
待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。
酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。
系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。
如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。
結語
酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。
為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。
附圖:圖1 人臉辨識的步驟。
圖2 人臉特徵點偵測(正臉)。
圖3 人臉特徵點偵測(左側臉)。
圖4 人臉特徵點偵測(右側臉)。
圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
圖6 區塊鏈分散式節點的概念圖。
圖7 系統概念流程圖。
圖8 取出人臉128維特徵向量。
圖9 儲存車輛相關資料及人臉資料到區塊。
圖10 HASH後及打包成區塊的結果。
圖11 汽車發動前小禛的人臉影像。
圖12 小禛的人臉影像特徵點。
圖13 小禛的人臉特徵向量資料。
圖14 系統通過酒測檢測者與駕駛人為同一人。
資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D
分數與小數的計算應用題 在 Facebook 的最佳貼文
職場中的AI並非總是「智慧」- 奧康納
許多僱主通過人工智慧監控員工居家辦公的工作情況,但人工智慧也經常辦蠢事。
新冠疫情迫使僱主認真思考自己有多信任員工。去年,許多公司不得不實施遠程辦公,如果不是疫情,這種規模的遠程辦公是它們無法想象的。許多僱主感到十分驚喜。他們發現可以相信員工居家辦公不偷懶。事實上,研究表明,居家辦公的人非但沒有悠閒度日,反而要比以往投入更多時間。
但其他僱主卻不願放手。看不到員工讓這些僱主感到害怕,他們驚慌失措地購買了監控員工的軟體,其中很多軟體聲稱能夠通過人工智慧(AI)監控違規行為並衡量工作效率。承諾能夠讓居家辦公人員遵守規則的雲系統市場正在蓬勃發展。一些軟體,如Controlio,提供「隱身模式」,令「用戶完全看不到該系統 — 工具欄中沒有圖標,任務管理器里也不顯示進程。」(Controlio告訴我,它還提供一種限制數據收集的「《通用數據保護條例》(GDPR)合規模式」,以及一個警告員工他們正被監控的選項。)
隨著AI迅速但悄然地進入人們的家中,歐盟(EU)近期及時公布了有關如何在一系列不同場景中使用AI的規則草案。擬議規則規定,用於「招聘和選拔人才、決定晉陞和解僱、分配任務、監控或評估工作相關合同關係中的人員」的AI應被列為「高風險」。「高風險」AI系統的提供商將必須履行某些義務,比如提供有關係統如何工作的明確訊息,使用高質量的數據集,並允許人工監督。
布魯塞爾方面將職場中的AI列為有風險是正確的。僱主和員工之間往往存在巨大的權力不平衡,尤其是在沒有集體協商機制的公司。如果你想獲得或保住一份工作,你可能會同意一些本來會讓你感到不適的事情。
工作中發生的事情也會對你的生活產生很大影響,反之亦然。我與一位受AI監控的美國呼叫中心員工交談時,她不懂為什麼算法給她的評價很差,而她的人類主管給她的評價總是很好。她懷疑AI不適應她的口音,但她對此無能為力。AI的評級影響了她的獎金,而獎金在她的月收入中佔據很大一部分。工作與家庭之間模糊的界限是認為在職場使用AI可能會出現問題的另一個原因。例如,國際工會聯合會「全球工會聯盟」(UNI Global Union)發現,被AI網路攝像頭監控的居家辦公的呼叫中心員工數量大幅增加。
這並不是說辦公場所的所有AI都有問題。人類管理者常常做出有偏見的決定。AI也許可以幫助他們更好地僱用多元化員工團隊、根據業績而非偏好來提拔員工。但員工應該有權知道何時使用了AI,知道AI宣稱的運作方式是怎樣的,並能夠對它的判斷提出申訴。在你的工作面臨威脅時,「電腦認為不行」不是個充分理由。
增強透明度也許還有助於阻止所謂AI「神油」的傳播。AI「神油」是比利時勞動法教授瓦萊里奧•德斯特凡諾(Valerio De Stefano)的說法,指的是市場上一些宣稱運用了AI、但其實與AI毫無關係的產品。例如,許多所謂的AI系統聲稱能計算員工的個人「生產效率分數」,但AI外殼底下的真實衡量標準非常基礎,比如一個人的郵件發送頻率(我個人認為,這是真正生產效率的反面指標)。員工不應在常常替代合理管理的偽科學評估中充當小白鼠。
但是最近草擬的歐盟監管規定也許還不能匹配這一挑戰。AI系統提供商有責任在一開始就評估自身的合規性。同時,歐盟成員國要委任一個國家級機構「監督(法規的)應用和實施」,並提供「市場監督」。德斯特凡諾表示:「自我評估不是笑話,沒有人會說它毫無作用,但這在職場上也許還不夠。」他還表示,這些法規不能成為歐盟內部新的監管天花板,因為法國、德國等國家已經採取進一步措施,以遏制某些類型的監控。
歐盟關於如何保護員工免受智慧機器帶來的風險的擔憂是對的。但更重要的是,要保護員工免受愚蠢機器帶來的風險。
原文:金融時報
#科技 #職場
分數與小數的計算應用題 在 賭Sir【杜氏數學】HermanToMath Youtube 的最讚貼文
杜氏數學 國際官方網站 http://www.hermantomath.com
----------
Title:
被莊家永遠隱藏的機率原來很易計?
----------
Subtitle:
一張凳、一本簿、一枝筆,便可以簡單運算?
----------
Script:
要知道某投注方法會否為你帶來長期穩定盈利,你要靠EV;而EV的計算,則涉及賠率(Odds)和機率(Probability)。一般賭局,賭率無論是固定,抑或不固定,都必定會顯示(例如球賽主勝、賽馬獨贏、六合彩派彩等);然而,勝負機率卻永遠隱藏。
計算機率可以非常複雜,看過賽馬博彩經典名著《計得精彩》的,相信都會深深感受得到。但計算機率亦可以非常簡單,有些連小學作業都有教。
為什麼又可以簡單?又可以複雜呢?這要由「機率是什麼」說起。
首先,機率就像重量、長度、價錢等,是一個量度值。當你想知道自己的體重,你會站在電子磅;當你想知道自己的身高,你會用尺量度;當你想知過大海船票幾貴,你會查一查價錢;而當你想知道一件事情發生的可能性,你便要計算機率。
那麼,有什麼事你會想知它的可能性呢?擲一粒骰「擲到七點」的可能性,你會想計算嗎?不。因為擲一粒骰「必定」不會擲到七點。那麼,擲骰擲到整數的可能性,你又會想計算嗎?不。因為擲骰「必定」擲出整數。由此可見,當你已經知道問題的答案是鐵定的YES或NO時,你不會問可能性。換言之,當你不肯定某事情是YES還是NO時,你才會想窺探可能性。
最家傳戶曉的例子,非擲毫莫屬:究竟下一回是公定字呢?
雖然機率是數學之中的一個範疇,但機率在語言之中也佔了一席位,縱使未曾學過機率,都會以「五十五十」來描述擲毫的結果,即擲到公和擲到字的機率均是百分之五十(50%)。
對有分數概念的則會以「二份之一」描述之。兩者相通,因為一整份是100%,各分一半自然是各佔50%,亦是兩份之中取一份,二份之一也。
分數概念對機率非常便利,將虛無飄渺的機率圖像化,轉化成「切蛋糕」的情況--由於你深信擲公和字的可能性均等,公和字就像一對雙胞胎,要吃相同份量的蛋糕,身為父母你便得把蛋糕一分為二,一份給公,一份給字,二份之一也。
此平平無奇的「二份之一」概念,更足以延伸至更多情況:
擲一粒骰子,擲得一點的機率是多少?
由於你深信一粒骰子六面的可能性均是相同,它們就像六胞胎平分生日蛋糕,你把蛋糕一分為六,一仔、二仔、三仔、四仔、五仔和六仔各取一份。擲得一點的機率,六份之一是也。
只要看得穿多少胞胎在分蛋糕,便能運算出機率。
雖然擲毫的機率十分顯淺,顯淺得令不少自稱患有「數學恐懼症」的人也會對機率產生興趣,然而,由擲毫和擲骰引起的誤解,同時惹來不少人放棄了機率,甚至徹底訴誅運氣鬼神之說。最常見的誤解是:
「擲公字的機率是二份之一,那麼,要是第一局己擲到了一次公,下一局將必定擲到字嗎?」
當然不是!否則每次擲硬幣不就只會公字公字公字……梅花間竹地出現嗎?這是天方夜譚吧。再者,若「必定」梅花間竹地出現,機率該是100%,這一點也抵觸了「二份之一」的說法。
「既然二份之一的機率,並不代表能夠預測下一局,對賭客來說又有什麼意思?」
答案很簡單,就是用來計算EV,預知定然的長遠結果。
明白了機率的意思和功用之後,接下來正式講解機率的3大運算方法:
1. 窮舉法(Exhaustive Method):一次隨機事件
先前提過,基本的機率運算,是平均分蛋糕的遊戲。由此可見,「有幾胞胎」以及「拿幾件蛋糕」都是舉足輕重的問題。幸好,這種「有幾」的問題,都只是嬰孩學「數手指」(即數數目)可以應付的問題。
由擲公字的例子起步,全部的情況有「公」和「字」,我們就這樣數:
「公……第一個;字……第二個。總共兩個。」
即問題涉及雙胞胎,將蛋糕分成兩份。
如想知擲得「公」的機率,我們又再數過:
「公……第一個。總共一個。」
可見「公」的機率便是「兩份之」中的「一」份,二份之一也。
擲骰子亦同樣,這樣數全部的情況:
「一點……第一個;兩點……第兩個;三點……第三個;四點……第四個;五點……第五個;六點……第六個。總共六個。」
即問題涉及六胞胎,將蛋糕分成六份。
如想知擲得「雙數」(即2、4、6)的機率,我們又再數過:
「兩點……第一個;四點……第二個;六點……第三個。總共三個。」
可見「雙數」的機率便是「六份之」中的「三」份,六份之三也。
兩題的答案,分別是「二份之一」( )和「六份之三」( ),究竟誰大誰小呢?欲比較分數,可以先將它化簡,繼續直接觀察,或者相減或相除。然而,分數的觸覺並非人皆有之,曾有趣聞說超過一半的美國受訪者誤以為「四份之一」比「三份之一」大。由此,我建議採取較「平易近人」的百份率(%),換算方法是--將分子除以分母,再乘以100,便是百份之多少,即多少%了。
機率(%)=分子÷分母×100
以上述的結果為例,先把1除2,再乘以100,得出50,即擲得公的機率為 50%;把3除以6,再乘以100,得出50,即擲得雙數的機率同為50%。平分秋色,「一樣那麼可能」。
由這兩個例子得知:只要能夠準確細數可能發生的情況(我稱之為懂得數手指)便能夠計算基本的機率了。
當然,懂得數手指並不等如一定數得清,當數量太多的時候,例如打麻雀(144隻牌)一起手便食糊(又稱食天糊)的機率,逐個數並非明智之舉。雖然「理論上」只要有一位有無比耐性的人,的確能夠把所有可能性徹底列出,但整個過程也拖太久了吧?
因此,數數目亦應該要有聰明的方法。
2. 列表法(Tabulation):兩次隨機事件
以擲骰子為例,擲一粒骰當然能夠「數手指」,因為只得6面。可是,如果擲兩粒骰呢?總有多少個可能的結果?
「第一粒骰一點、第二粒骰一點……一個;第一粒骰一點、第二粒骰兩點……兩個;第一粒骰一點、第三粒骰三點……三個……」給些少耐性,最終便會得知,總共有36個可能發生的結果。
列出來當然可以,但無可否認實在太煩了,而煩,亦自然代表較易出錯。究竟有沒有什麼方法可以將情況整齊地表達出來呢?
日常生活中,有一種表達方法,很值得參考,就是馬經表達「連贏」賠率的列表法。由於「連贏」是要預測單一賽事的冠軍和亞軍馬匹,因此會是兩個馬匹號碼互相配搭,例如「一號馬匹」搭「六號馬匹」,情形就像2粒骰的點數,「一點」加「六點」。
由「馬經作圖法」可以將擲兩粒骰的情況歸納如下:
每一格分別代表一個情況,例如橙色的格子代表「啡色的骰子五點,綠色的骰子三點」。 由此可見,擲2粒骰總共有36個可能結果。換言之,將蛋糕切成36份。
如問擲得總點數為10的機率,使用「馬經作圖法」答案一目了然:
非常明顯,共有3個格子,是兩骰點數相加為十(分別是(4,6)、(5,5)和(6,4))因此這三十六胞胎,現在有三胞胎說要吃蛋糕了,在「36份之」中吃了「3」份,答案是「36份之3」( )。(試利用公式把它轉成%吧!)
值得留意的是,這招「馬經作圖法」有一個值得每次使用之前都要小心思索的地方:
試想想,現有6張卡,分別畫了骰子的6面,現在你隨機抽取兩張,請問2張卡的點數相加為十的機率是多少?
很多人會照舊作答「36份之3」,原因是問題只是將骰子變成卡片,情況不甚改變,而且,使用「馬經作圖法」會得出了一幅相同的列表:
可惜這是錯的,答案錯,列表也是錯的,錯在算少了一著:擲骰子可以擲到相同數字,例如2粒骰都是一點,但抽卡並不能抽到相同數字呢!卡片只得1張,你怎樣也不能抽到2張都是一點。因此,列表應修正如下:
灰色代表根本不可能發生的情況,即不存在的胞胎。根據這個修正後的列表,蛋糕應平分為30份,而不是36份。符合相加為十的結果,亦不是3個,而是2個,因為根本沒可能抽出2張都是五點的卡片。有見及此,修正後的答案為「30份之2」( )。(試利用公式把它轉成%吧!)
3. 樹狀圖(Tree Diagram):兩次或以上隨機事件
雖然列表可以將可能性整齊地列出來,但列表也有它的局限之處,就是只能解決兩次隨機事件。如有三次或以上隨機事件,則要靠樹狀圖了。
以擲毫為例,如連擲三枚硬幣,擲得至少一次公的話,你便可以獲得8000元,這個遊戲值得花5000元去玩嗎?
首先,你得知道勝出這賭局的機率,即擲三枚硬幣能夠擲得至少一次公的機率。由於這涉及三次隨機事件,因此無法使用列表法,非用樹狀圖不可:
樹狀圖就像旅行路線圖,每一條路都是一個行程,每一個行程就是每一個可能性,不妨逐個寫出來看看:
由圖所示,這年遊戲總共有8個結局,而當中有7個結局能使你獲得8000元獎金,由此使用「分蛋糕」概念,你勝出遊戲的機率是8份之7,換算成百分率,即87.5%。
賠率則這樣計算:以5000元當作1注,如得勝則淨贏3000元,即贏3000÷5000注,又即0.6注。因此,你若參與這個賭局,你的EV = 0.6 × 87.5% - 12.5% = 40%,是一個正數。長賭下去,你將會獲取40%的純利,當然值得參與賭局。
----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
----------
精選系列節錄:
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo

分數與小數的計算應用題 在 吳老師教學部落格 Youtube 的精選貼文
JAVA證照考題解答分享(Android證照的跳板)
http://terry55wu.blogspot.tw/2014/01/javaandroid.html
課程大綱:
1.認識 AWT類別
2.認識並學習如何建立視窗物件
3.學習如何管理與配置版面
4.事件處理:1.認識 Java的委派事件模式。2.認識並學習使用各種事件處理類別。3.學習各種物件的事件處理 。
之後:
1.分享最新的JAVA DOCS資訊與中文化版本,
並設定ECLIPSE直接讀取JAVA說明檔的設定方法。
2.利用實例綜合練習變數宣告、資料型別、運算子、
流程控制的IF...ELSE與各種迴圈方法的應用。
3.說明陣列與多維陣列的使用與實例。
漸漸更深入JAVA語法的核心,有些同學似乎已經吃不消,
但有些同學可能以前學過,所以一下子就解出來了,
也很大方的分享出他的解法,
不過這樣有時反而讓一些沒學過JAVA的同學備感壓力。
因為老師以為大家都會了,所以就加速往前,害一些同學在後面趕的很辛苦,
腦筋已經被迴圈給轉的頭昏,還沒弄懂題目,又要接下一題,
所以真有點兩難,好在助教的提醒,有稍放慢一點進度,
若有程度較好的同學,請些自行預息後面的課程,
或是先準備TQC JAVA的學術科考題好了,再不然好心一點,
充當一下老師的分身,幫忙同學一下,感謝!
101模擬樂透彩
102系統日期、時間顯示
103亂數排序器
104河洛之數
105陣列行列轉換
106數值過濾器
107求平均值
108九九乘法表
109面積與體積計算
110單字測驗
202利息計算
204期末考分數計算
206四則運算
208三角形邊長判斷
210字元搜尋器
302字體設定選擇器
304簡易繪圖板
306滑鼠感應視窗
308藝人音樂評等
310年齡計算
相關JAVA教學:
發表時間 文章標題
2015-06-22 JAVA網路程式設計第1天上課分享(HTML 5與JavaScript)
2015-06-21 艾鍗JAVA物件導向程式設計2(流程控制)
2015-06-21 JAVA程式設計第2次上課(環境安裝與變數與Math類別)
2015-06-20 從JAVA入門到智慧型手機設計第2次上課
2015-06-20 從JAVA入門到智慧型手機設計第1次上課
2015-01-16 如何在JAVA顯示河洛之數結果
2015-01-16 如何在JAVA顯示系統時間並格式化
2015-01-16 JAVA物件導向設計第3堂課:JSP與APP跳板
2015-01-16 JAVA物件導向設計第2堂課:JSP與APP跳板
2015-01-16 JAVA物件導向第1堂課:JSP與APP跳板
2014-01-20 佛光資應系JAVA證照考題解答分享(Android證照的跳板)
2013-08-19 艾鍗JAVA物件導向程式設計課程上課影音分享(2)
2013-08-02 總統府旁JAVA網路程式設計第2天上課分享
2013-08-02 總統府旁JAVA網路程式設計第1天上課分享
2013-03-15 從JAVA入門到智慧型手機設計第2次上課
2013-03-11 從JAVA入門到智慧型手機設計(1)
2012-10-27 有七星潭海浪聲的JAVA入門與證照分享
2012-09-14 JAVA程式設計第7次上課
2012-08-29 JAVA程式設計第1次上課
2012-05-31 有七星潭海浪聲的JAVA入門與證照分享1
2012-04-08 JAVA證照考題解答分享,Android證照的跳板
2012-01-25 JAVA證照考題解答分享,Android證照的跳板
2011-10-04 JAVA程式設計總整理
2010-10-30 湜憶電腦 TQC JAVA進階級先修課程之二
2010-10-30 湜憶電腦 TQC JAVA進階級先修課程
2010-05-30 最近的生活很JAVA--分享GOOGLE服務在教學上的應用
2010-05-30 文化大學推廣部JAVA程式設計第 5 次上課
2010-05-30 文化大學推廣部JAVA程式設計第 4 次上課
2010-05-30 文化大學推廣部JAVA程式設計第 3 次上課
2010-05-30 文化大學推廣部JAVA程式設計第 2 次上課
2010-05-30 程式語言排行榜,C語言居冠,JAVA次之
2010-05-30 最近的生活很JAVA--分享GOOGLE服務在教學上的應用
2010-05-22 JAVA程式設計第2次上課(環境安裝與變數與Math類別)
2009-08-27 TQC JavaScipt 實用級線上影音
2009-08-24 TQC JavaScipt 線上影音教學課程 101自動瀏覽器
2009-03-12 Java、VisualBasic、Visual C++有什麼不一樣呢?
java下載,jdk,eclipse,java教學網站,java教學影片,java eclipse教學,eclipse 教學,java證照解答,AWT類別, 電腦證照

分數與小數的計算應用題 在 吳老師教學部落格 Youtube 的最讚貼文
智慧型手機APP的第一堂課,這是東南科大上課所設計的第一個APP,
按部就班一步步有計畫學習,設計出自己的APP一點也不難。
東南資管Android遊戲課程協同教學(2)
今天主要的課程內容為ANDROID模擬器設定與執行,並將ECLIPSE中文化,
在建立第一個ANDROID專案名為 HELLOWORLD,接著講解專案結構說明與介面設計,
最後被開始撰寫程式,寶快如何宣告物件,如何連結UI介面上的元件與事件的建立。
此次受呂老師之邀,以業界專家的身分前去協助,
希望能給學生比較多實務方面的知識,這是繼之前兩次東南研習
最熱情的東南科大Android教師研習心得分享
http://terry55wu.blogspot.com/2011/10/android.html
東南科大資管系專題評審心得
http://terry55wu.blogspot.com/2011/12/blog-post.html
之後再到東南科大的專案,課程主要讓學生熟悉Android遊戲設計,
我的規劃:
Android智慧手機系統開發環境為主,
以循序漸進的方式講授Android應用程式架構、圖形介面開發、測試與除錯等,
使學生能開發網路遊戲、多媒體等各類型手機應用程式為目標。
並提供對大家未來專題設計的想法:
1.用新技術做出來的專案分數較高,如ANDROID平台。
2.設計能跳開PC設計方式,如陀螺儀與GPS等運用。
3.題目不宜過大,小題目用心最好,焦點清楚最好,否則題目大最難落實。
01_ANDROID模擬器設定與執行
02_如何將ECLIPSE中文化
03_建立第一個ANDROID專案HELLOWORLD
04_專案結構說明與介面設計
05_程式碼撰寫(宣告&連結&事件)
更多學習分享可以到:
http://terry55wu.blogspot.com/
或GOOGLE搜尋:吳老師

分數與小數的計算應用題 在 媽媽數學教室- 【更新通知】 剛剛上傳了6年級:分數小數四則 ... 的推薦與評價
【更新通知】 剛剛上傳了6年級:分數小數四則混合這個單元的應用題是集國小四則應用之大成基本上如果可以輕鬆應對那國小的應用題80%以上沒有問題了最後一個重點是基準 ... ... <看更多>