單大台北就有台灣一半的質子機,不過,北部有那麼多癌症病人嗎?就算有,多少病人負擔得起一次診療就噴數十萬元呢?
#郭台銘 #長庚 #榮總 #尹衍樑
⭐️掌握更多訊息,快加入信傳媒Telegram:https://is.gd/a5lUNM
👉國民黨主席之爭》江啟臣以「造王者」自許發表參選宣言 擁朱者:朱立倫再不出聲就輸了
https://www.cmmedia.com.tw/home/articles/25927
「北醫質子中心」的推薦目錄:
- 關於北醫質子中心 在 信傳媒 Facebook 的精選貼文
- 關於北醫質子中心 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
- 關於北醫質子中心 在 公視新聞網 PNN Facebook 的最讚貼文
- 關於北醫質子中心 在 蔡萬才癌症大樓暨北醫質子中心介紹影片 - YouTube 的評價
- 關於北醫質子中心 在 健康保險大家談1369集-打擊腫瘤十年淬鍊北醫質子中心啟動 ... 的評價
- 關於北醫質子中心 在 北醫精緻型質子治療中心A Milestone for Taipei's First Proton ... 的評價
- 關於北醫質子中心 在 北醫質子治療中心的推薦與評價,YOUTUBE、FACEBOOK 的評價
- 關於北醫質子中心 在 北醫質子治療中心的推薦與評價,YOUTUBE、FACEBOOK 的評價
北醫質子中心 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
【AI浪潮席捲醫療業】透視5大類醫療影像辨識的AI應用場景
常見的醫療影像包括了X光、超音波、CT、MRI,以及近年興起的數位病理。由於拍攝技術不同,決定了影像性質和張數多寡,更影響了AI模型訓練的難易度和應用場景
文/王若樸 | 2019-04-16發表
醫療影像一直是窺視人體內部結構與組成的方法,其種類包括了X光攝影、超音波影像、電腦斷層掃描(Computed Tomography,CT)、核磁共振造影(Magnetic Resonance Imaging,MRI)、心血管造影和伽瑪射線等等。
其中,X光攝影、超音波攝影、CT、MRI,以及近來興起的數位病理,都是目前用來打造醫療影像AI常見的類型。這幾種影像因為拍攝技術不同,決定了影像性質和張數多寡,也影響了打造AI模型的難易度和應用場景。
就影像性質來說,臺北榮總放射線部主任郭萬祐表示,X光片、CT、MRI等影像的切片厚度(即每隔多少身體厚度拍攝1張斷層影像的距離)分別是0.16毫米、0.625毫米以及1~2毫米,與數位病理切片的0.11微米相比,解析度相對低,因此從硬體需求角度來看,是醫療影像AI的入門首選。
常見醫療影像AI的類型與應用場景
在這些醫學影像中,「X光和超音波屬於初階檢查,」中國附醫人工智慧醫學診斷中心主任黃宗祺表示,這兩類檢查的拍攝門檻不高,因此累積出大量、各式各樣的影像資料,滿足訓練AI模型的先決條件。
X光攝影是利用X光對不同密度物質的穿透性來成像,密度越高,X光穿透性就越低,在底片上的成像就越白,反之越黑。不過,臺大生醫電資研究所所長張瑞峰指出,「X光攝影將原本立體的多張橫切面影像疊壓為一張平面影像,」因此,一張X光影像中涵蓋了龐雜的訊息,不僅病灶可能會被組織、器官重疊處擋住,小於1公分的腫瘤也難以檢測出,得靠CT進一步檢查才行。
而超音波攝影,則是利用超高頻率的聲波來穿透人體,將不同組織反射回來的聲波轉換為畫面,來呈現體內組織或器官構造。超音波的好處是沒有輻射,但黃宗祺指出,超音波影像雜訊高,難以偵測初期病徵。就乳房腫瘤檢測來說,需要不斷追蹤,才能確定疾病狀況,但也可能因此錯過即早治療的時機。
因此,就X光和超音波來說,AI的應用場景,主要是協助醫生快速從訊息含量大的影像中,找出肉眼難以發現或容易忽略的初期病徵。在2年前,AI權威吳恩達的團隊所設計的CheXNet模型,以121層卷積神經網路(CNN)架構和美國國衛院釋出的胸腔X光資料集訓練而成,就可以做到早期偵測來輔助醫生診斷。
或像中國附醫所開發的乳癌超音波AI輔助分類系統,利用4萬多筆超音波影像和深度學習Xception架構打造而成,能在人眼難以判斷的初期階段,就偵測出腫瘤,「甚至早3、5年就發現了。」黃宗祺強調。
至於CT和MRI,「屬於進階檢查。」黃宗祺表示,兩者專門用來檢查腦、心、肺、腹部臟器等重要器官,門檻較X光和超音波高,成像也較清晰、細緻。但有別於X光片和超音波影像,CT屬於3D影像,透過X光來掃描人體,經電腦重組,以多張橫切面影像來呈現立體的檢查部位,並根據每張橫切面影像的間隔,分為厚切與細切,間隔越小,越能呈現完整的器官。單一次CT掃描可產生數百張影像,也才有機會能夠發現1公分以下的小型腫瘤。
MRI同樣也是一種3D影像,其原理是利用強大的磁場與人體內的氫質子產生共振,再透過電腦處理共振訊號後成像,可以清楚呈現出軟組織和重要器官的結構,像是腦、心、腹部臟器和骨骼關節等部位。MRI掃描一次可產生數百甚至數千張影像,畫質比CT更好。
要進行CT影像和MRI的影像辨識時,雖然醫生容易從清晰的影像中找到病灶,但這兩者每次掃描動輒就產生數百張影像,要從中尋找病灶,不管是標註還是診斷病情,都相當耗時。
臺北醫學大學副校長暨北醫附醫影像部主任陳震宇以肺結節CT掃描來說明,一次拍攝會產生500張影像,而醫生至少得花20分鐘,才能找出肺結節的位置。病人數量一多,醫生不僅要花更多時間來檢驗,準確率也會因長時間作業而下降。
不過,也因為人工判別CT和MRI相當費時,正是醫療影像AI擅長的的應用場景。這也是為何北醫附醫正計畫建置一套肺結節AI輔助偵測系統的緣故,就是為了縮短看片時間,讓醫生有更多時間在病人身上。
吳恩達研究團隊利用美國國衛院釋出的胸部X光資料集,打造出CheXNet模型,可辨別肺部14種疾病,並以熱成像圖來顯示病灶位置。
醫療影像AI新挑戰:數位病理切片
數位病理是醫界近幾年的新浪潮,可以將原本只能在顯微鏡下察看的病理切片,改成直接在電腦上進行。它的出現,是醫療影像AI的新方向,卻也是一個高難度的挑戰,因為數位病理的製作複雜,需經過組織處理、染色切片,以顯微鏡觀察、再掃描至電腦儲存,仰賴醫生專業經驗與時間。
不只如此,數位病理的檔案容量還相當大。與CT、MRI不同,數位病理和X光片一樣都是平面影像,但單一張影像的解析度卻比X光片、CT和MRI高上1,000倍,可達1GB至2GB。因此要拿來訓練AI,不只資料儲存是一大挑戰,訓練模型的時間也需要更久。以數位病理起家的臺灣AI醫療影像新創雲象科技就提到,曾有一次要用一個100層的殘差網路ResNet來訓練每張解析度高達1萬×1萬的影像,得靠GPU搭配600GB系統記憶體才能運算。
不過,臺灣在數位病理的AI應用已經起步了,林口長庚醫院就找來雲象科技開發了一套準確率高達97%的鼻咽癌偵測模組。北醫附醫已經開始將上千片肺癌數位病理交由放射科醫生,要展開部分標註的工作。臺北榮總今年也計畫投資數位病理。
然而,不管是哪種影像類型,在打造AI系統時,都會面臨資料收集的挑戰。也因此,科技部2年前特別發起醫療影像計畫,聯合國內3家大型醫學中心,要利用國人的醫療影像資料,來建置一個大型AI醫療影像資料庫,推動醫療影像AI的發展。
臺北醫學大學附設醫院自去年起,找來了10名擁有2年經驗以上的主治醫生,著手建置肺結節AI醫療影像資料庫,目前已完成1,500例的影像標註和語意標註,今年還要再新增2,000例。
附圖:【超音波影像AI實例】中國附醫旗下子公司長佳智能,開發一套乳癌超音波AI輔助分類系統,可以辨識乳房腫瘤及其良、惡性程度。目前,腫瘤辨識率達9成以上,而腫瘤良、惡性辨識率則約7成左右。(攝影/李宗翰)
X光影像AI實例
MR影像AI實例
臺北榮總與臺灣人工智慧實驗室以6個月的時間,打造出一套能在30秒內就揪出腦轉移瘤的AI系統DeepMets。今年4月份最新結果顯示,DeepMets準確率已達95%。 (攝影/洪政偉)
CT影像AI實例
數位病理影像AI實例
林口長庚醫院與雲象科技共同打造一套鼻咽癌AI偵測系統,由醫院提供數位病理切片資料,雲象負責進行模型訓練,經過2年優化,目前準確率達97%。 (圖片來源/雲象科技)
資料來源:https://ithome.com.tw/news/129973…
北醫質子中心 在 公視新聞網 PNN Facebook 的最讚貼文
【6000學生宿舍僅800床 北醫還拿校地蓋營利設施】
台北醫學大學近300位學生、校友聯署,抗議校方長期忽視學生宿舍及實驗空間嚴重不足,卻投入大筆經費興建可以獲利的質子治療中心等高端醫療設施和生技園區,要求校方應該首重學生的受教權益,拒絕教育商品化。
北醫質子中心 在 健康保險大家談1369集-打擊腫瘤十年淬鍊北醫質子中心啟動 ... 的推薦與評價
經過長達十年淬鍊的台北醫學大學附設醫院質子治療中心已於日前完成第一例治療。甚麼是質子治療?今天我們邀請北醫院長邱仲峯醫師與質子治療中心副主任 ... ... <看更多>
北醫質子中心 在 北醫精緻型質子治療中心A Milestone for Taipei's First Proton ... 的推薦與評價
臺北市首座 質子 治療 中心 - 北醫 精緻型 質子 治療 中心 A Milestone for Taipei's First Proton Therapy Center #臺北醫學大學#臺北癌症 中心 # 質子 治療 ... ... <看更多>
北醫質子中心 在 蔡萬才癌症大樓暨北醫質子中心介紹影片 - YouTube 的推薦與評價
蔡萬才癌症大樓暨北醫質子中心介紹影片. 1.2K views · 5 months ago ...more. 臺北醫學大學附設醫院TMUH. 1.08K. Subscribe. 1.08K subscribers. ... <看更多>