#要預購iPhone13的粉絲~留言: 機型+容量+顏色
最新iPhone 13系列介紹~
1. A15仿生晶片效能升級
代代換新的iPhone處理器,今年帶來全新的A15仿生晶片,具備150億個電晶體,2個效能核心與4個節能核心,速度快了50%,據蘋果官方說法為目前最快的智慧手機晶片。新的16核心神經網路引擎,每秒帶來15.8兆次運算能力。
A15仿生晶片依據iPhone 13/13 mini,與iPhone 13 Pro/13 Pro Max有不同的GPU核心,分別為4核心(快了30%)與5核心(快了50%)。對專業工作者來說,Pro系列升級的圖形處理效能,更能應付攝錄編輯等多工需求,甚至是高規格的遊戲畫面也能順暢運作。
2. 螢幕更亮、瀏海面積縮減20%
iPhone 13/13 mini帶來更出色的超視網膜XDR螢幕,可達800尼特亮度,比前代升級28%,HDR峰值亮度可達1200尼特;iPhone 13 Pro/13 Pro Max則可達1000尼特亮度,比前代提升25%,以及HDR峰值亮度可達1200尼特。而隨著支援Face ID的原深感測鏡頭感測器整合重新設計,面積縮小了20%,讓原本的螢幕占比更高,在iPhone 13全系列都可感受到瀏海面積縮小的差異。
3. Pro系列支援ProMotion螢幕更新率
iPhone 13 Pro/13 Pro Max帶來與iPad Pro同等的ProMotion螢幕更新率,可以在使用者需要時自適應10~120Hz範圍,例如在遊戲、瀏覽畫面時快速刷動螢幕時提高,而在一般待機模式下調降,一方面可提供更優異的螢幕體驗,也可有效降低電量消耗。
4. 續航能力提升
iPhone 13全系列因主機板配置重新設計,均放進了更大的電池,加上A15仿生晶片的節能效果讓iPhone 13系列續航升級。iPhone 13 mini/13 Pro較前代續航多了1.5小時,iPhone 13/13 Pro Max較前代多了2.5小時。
iPhone 13 mini、iPhone 13、iPhone 13 Pro、iPhone 13 Pro Max分別可供影片連續播放17、19、22、28小時。由於更大的電池容量,iPhone 13 Pro Max快充到50%耗時略長為35分鐘,其餘則為30分鐘。
5. 新色系
iPhone 13/13 mini帶來新的色系選擇,原本的白色改為星光色,黑色改為午夜色,新增了粉色,以及與前代稍有差異的藍色,並維持原有的ProductRED紅色,共有五色可選。iPhone 13 Pro/13 Pro Max則維持石墨色、金色、銀色,原本的特殊色太平洋藍,改為天峰藍色特殊色。
6. 加大容量還更便宜
原本在iPhone 12/12 mini有64、128、256GB可選,現在直接翻倍到128、256、512GB,且價格還更便宜。iPhone 12 mini起售價為2萬3900元,12為2萬6900元,現在iPhone 13 mini為2萬2900元、iPhone 13為2萬5900元。
iPhone 12 Pro/12 Pro Max為128、256、512GB,起售價iPhone 12 Pro為3萬3900元,12 Pro Max為3萬7900元;到了iPhone 13 Pro/13 Pro Max新增了1TB選項,雖然售價最高的1TB iPhone 13 Pro Max來到5萬4400元創下新高,不過在起售價上,iPhone 13 Pro與13 Pro Max同樣便宜1000元,分別為3萬2900元與3萬6900元。
7. 鏡頭規格大升級
iPhone 13/13 mini在主廣角鏡頭配置了1.7微米像素的感家元件,能收集47%光線,更好地提高明亮效果減少噪點,並且配置了原本在iPhone 12 Pro Max獨有的Sensor Shift位移式光學影像穩定功能,讓錄影成像更加穩定。
而iPhone 13 Pro/13 Pro Max主鏡頭則具備1.9微米像素的感光元件,光圈升級到f/1.5,為iPhone史上最大的感光元件,較前代提升2.2倍的低光拍攝明亮效果,13 Pro上同樣具備Sensor Shift位移式光學影像穩定功能。
而在13 Pro系列上的超廣角鏡頭也有感升級,配置f/1.8大光圈,並且可支援2公釐的微距拍攝,另外在望遠鏡頭提升到77公釐等距,帶來3倍光學變焦效果,最遠可達15倍數位變焦。雙鏡頭的iPhone 13/13 mini則維持同光圈,並且不具備夜間人像模式功能。
8. 攝錄功能進化
在iPhone 13全系列帶來新的Cinematic Mode電影模式,可支援在錄影時,針對人物、寵物、物體等被攝主體在切換時自動調整對焦,帶來背景虛化的效果,並且可在拍攝當下或後製虛化程度。且電影模式支援杜比視界,隨著晶片升級,全線iPhone 13都支援4K 60fps錄製,以往iPhone 12/12 mini只有4K 30fps。
iPhone 13全系列在拍照模式上,也支援全新的 Photographic Styles 攝影風格,可以讓使用者調整高對比、高飽和、溫暖、冷冽等風格濾鏡,且可以自定義調整參數。另外,iPhone 13 Pro/13 Pro Max在秋天後會支援ProRES錄影格式,方便讓專業工作者輸出剪輯影片。
同時也有16部Youtube影片,追蹤數超過7萬的網紅在地上滾的工程師 Nic,也在其Youtube影片中提到,程式亂寫也可以動,要怎麼寫的好或易於閱讀,就得花上一番功夫去學習寫作技巧。 這支影片會和你分享一些基本的知識點,實戰技巧基本上當代程式語言開發都能使用 不過每個時代會有不同的想法跟觀點,不同的團隊也會有不一樣的慣例,希望這次的內容能夠給你一些不一樣的想法 喜歡影片的話!可以幫忙點個喜歡以及分享...
參數化設計定義 在 Facebook 的精選貼文
好書推薦《#造局者》部落格文末抽獎贈書 2 本
這是我今年讀過最喜歡的書之一,作者探討在這個 AI 崛起和時局飄渺動盪的年代,人類已經無法跟演算法和電腦的計算速度競爭。但是,身為人類的我們仍然擁有一項電腦無法取代的優勢:「懂得建立、想像、創造各種思考框架的能力」,掌握這項能力的人在未來會愈來愈有優勢。
部落格文章 https://readingoutpost.com/framers/
Podcast 用聽的 https://readingoutpost.soci.vip/
.
【這本書在說什麼?】
《造局者》這本書的作者是三位學者共筆,他們都是在 AI 和 大數據領域有卓越的成就,分別是《經濟學人》雜誌資深編輯庫基耶(Kenneth Cukier)、英國牛津大學網路研究所教授麥爾.荀伯格(Viktor Mayer-Schönberger)、歐洲管理科技學院教授,決策、模型暨數據中心主任德菲爾利科德(Francis de Véricourt)。
他們發現在 AI 崛起和世局動盪的現在,人類最無可取代的能力之一就是「決策能力」,而要擁有好的決策能力就必須掌握許多不同的「思考框架」。因為當一個人能提出正確的思考框架,就能找出更多的選項,做出更好的決策,創造更好的局勢。深諳此道的人就被稱之為「造局者」。
這本書從人類如何做出好的決策出發,談到建立思考框架的重要性,也提供我們三種最重要的建立思考框架的方式。在書本中段,則說明了遇到瓶頸的時候,如何重啟另一個思考框架。在後半段則說明了我們該如何學習更多的思考框架,以及讓自己擁抱更加多元性的策略,並且培養敏銳的心智。
如同這本書的介紹影片裡談到的:生活中一切都需要抉擇,而做出更好抉擇的秘訣,就在於思考框架。駕馭這種思考方式可以讓你更瞭解世界、改善工作表現和人際關係、促進社會進步。這也是人類之所以能夠勝過機器和 AI 的因素。成為「造局者」正是未來人才必不可缺的關鍵技能。
.
【什麼是造局者?】
以標準的定義來說,「造局者」(Framer)指的就是起草美國憲法的那一群人,他們建立了聯邦政府的框架。因為美國憲法就像是一個思考框架,用來定義和界定聯邦政府的職權及程序。而在這本書中,造局者指的就是那些「懂得建立和運用思考框架的能手」。
這本書要講的重點之一,就是無論人們的地位高低,每個人都可以成為造局者:「能夠發揮和建立思考框架,或是重啟思考框架的能力,讓自己的生活乃至於整個世界有所不同。」作者也不斷強調建立思考框架所需要的技巧,可以靠著訓練與經驗不斷進步。這本書就像是一本操作指南。
.
【什麼是思考框架?】
在1970年代,「心智模型」(Mental Model)的概念開始流行,人類的推理並非以邏輯形式在運作,反而更像是在模擬現實:人們評估各種選項的方式,是去想像可能發生的種種情況。我們對於世界萬物的思考方式,會受到你「相信」這個世界如何運作而影響。因此,面對同樣一件事情,用不同心智模型在思考的人會有不同的觀點。
而在這本書中所謂的「思考框架」(Frame)就是我們選擇和應用的心智模型,這會決定我們如何理解世界、決定我們如何行動。面對一個新的情境,我們也可以用思考框架去歸納和歸類,並且想出一個抽象的概念,在應用到這個全新的情境裡面。
舉例來說,當我們要畫地圖的時候,經常會採取「笛卡爾直角坐標」的思考框架,這上面有X軸和Y軸的維度可以幫我們用2D的觀念畫出相對的距離和位置。可是當你要在台北市搭捷運從A地到B地的時候,反而採用「捷運地圖」的思考框架比較有效,雖然捷運地圖的站點之間,距離和位置都不是真實的呈現,可是卻能幫助乘客直覺地理解:下一站要去哪裡。這時的重點就不是距離和位置,而是清楚地辨認出目的地的站點該搭乘哪一條線。
所以當我們問:「哪一種地圖最好?」這個問題本身並沒有意義,而是會因為使用的情境和目的的不同,而產生不同的答案。所以,也沒有什麼叫做最正確的思考框架,都是要看情況和目的而定。讓自己成為建立思考框架的能手——也就是造局者,就能懂得如何選擇並且應用思考框架,這會是各種決定與行動的基礎。
.
【思考框架的轉變】
在聊主動建立思考框架之前,讓我們先看一個被動轉換思考框架的真實故事,這是書中提到一段關於朗讀到默讀的閱讀框架轉變。在西元11世紀之前,歐洲大部分都是在教堂才會有閱讀的行為,而且都是以「集體朗誦」的方式在進行,主要的目的是讓大家參與一個讚頌神的集體活動。但是到了11世紀之後,開始出現另外一種閱讀的框架,也就是「默讀」。
默讀讓閱讀這件事情不再是集體的體驗,而是一種個人的經歷。每個讀者都可以控制自己要讀快一點或慢一點,你也可以重複閱讀某一些篇章,自己可以慢慢思考書裡面的內容,產生新的點子,促進獨立思考。到底,是什麼東西造成了人們從朗讀的閱讀框架,轉移到默讀的閱讀框架呢?
在早期的書籍和文章裡面,常常沒有標點符號,字跟字之間也沒有空格,就像是一連串的字母之間不斷地延續。這種情況下光是要閱讀就非常困難了,想要默讀更是不可能的任務。這個時候集體朗讀就有它的功能,因為在一群人裡面,總會有人過去曾經讀過這篇本文,還記得某些字跟段落該怎麼念,就可以帶領大家一起朗讀下去。
在後來才出現了一項創新,書籍的字裡行間,開始有了「空格」和簡單的「標點符號」,這個時候就不再需要有人帶領,許多讀者可以自己進行斷句,獨自閱讀一本書了。於是,在這個時候人們就可以切換到另外一種閱讀框架。這件事情的影響非常的深遠,因為這一整個新世代的讀者都可以自行默讀,有助於人們自己的獨立思考,進而激發出更多元的思考框架。
.
【建立思考框架的三個方式】
建立思考框架的方式有三個:想清楚因果關係,想像出平行現實,運用物理學定律制定適合的限制條件。這三個特色正是應用思考框架的時候最重要的因素。值得注意的是,思考框架本身並不是解決方案,而且是尋找解決方案的工具。以下分別介紹這三個方式:
.
1.#因果關係
人類運用因果思維來看待這個世界,可以更容易理解世界,也有助於預測未來可能發生的事情,可以說人類是天生「因果推理」的機器。相較起來,AI 科技就無法擁有自己的因果思維,而是需要人類幫忙設定。舉經典的 Dota 電腦遊戲來說,這是一個兩隊人馬 5 vs. 5 互相廝殺,力求破壞對方大本營的遊戲。
科學家找來遊戲高手擔任 AI 策略的開發人員,設計了一些獎勵因素,讓 AI 跟自己進行的數百萬次的對戰,反覆嘗試錯誤,找出最好的操作手法。但是當 AI 跟人類正式交鋒的時候,人類還是取得了上風,尤其在團隊合作上面 AI 顯得像一團散沙。
後來,開發人員發現說,一般玩家會分成三個階段來安排戰鬥,所以開發人員就依照這樣的順序安排程式,在不同的階段給予不同的策略,調整獎勵的優先次序。然後開發人員就發現說一開始機器人通常只會照顧自己,所以還得幫他們建立「團隊合作」精神的框架。他們建立起了一些跨越個人遊戲角色的「超參數」,調整成一隻要達成共同獎勵的團隊。經過這一些修改之後,AI 反過來把人類打得落花流水。
值得注意的是,電腦不是自己學會這些事情的,而是因為人類先輸入了一些「因果框架」的獎勵因素,才可以讓這些運算發揮它的功效。同樣的現象發生在其他像是圍棋和西洋棋遊戲的對決,真正的突破並不在於機器高速的數字運算,而在於人類調整了 AI 對於因果關係(獎勵)的思考框架。
.
2.#平行現實
書中的說法是「反事實思考」,但我認為有點難懂,用「想像出另一個平行現實」比較好理解。這個方法可以讓我們跳脫當下對世界的認知,想像出一個全新的情境,問自己:「如果……會怎樣?」就像是小孩子在玩扮家家酒,或者是科學家透過抽象理論設計出全新的實驗。透過想像出一個平行現實,我們可以將因果關係轉換成實際行動,測試看看可能有什麼影響,帶來什麼後果。
心理學家高普尼克(Gopnik)認為這種能力其實在人類孩童時期就已經具備了,他還把嬰兒稱為「搖籃裡的科學家」,她設計過一個很有趣的實驗名叫「贊多測試」的假裝遊戲(贊多指的是顏色鮮豔、形狀可愛的物體)。
實驗的第一階段,高普尼克和孩童待在同一個房間,孩童會學到一個因果關係:把贊多放到一個機器上面,機器就會播放生日快樂歌,幫一隻猴子玩偶慶生。然後,在實驗的第二階段,會有實驗人員走進來把機器和贊多拿走,高普尼克和孩童一起露出失望的表情。
這時候高普尼克會拿出一個「盒子」、兩個不同顏色的「積木」,並對孩童說:「我們假裝這個盒子是機器,這塊積木是贊多,另一塊積木不是贊多。」接著她鼓勵孩童繼續幫猴子玩偶慶生。此時,孩童挑選了正確的積木,放到盒子上。即使她把兩塊積木的定義互相對調,孩童都能夠選到正確的積木。
這個假裝遊戲的實驗,證實了人類自幼就擁有了反事實思考的能力,也就是有能力可以想像出另一個平行現實。高普尼克發現,更會玩假裝遊戲的孩子,就能對平行現實做出更好的推論。她說:「嬰兒和幼兒就像人類社會的研發部門,至於成人這是那些單調無聊的製造與行銷部門。」許多人在成年之後,反而容易落入單一現實的思考方式,而忘記了我們天生就有想像平行現實的能力。
.
3.#限制條件
作者提到,所謂的建立思考框架,並不是任由想像力無邊無際地飛翔,也不是像斷了線的氣球到處亂飄,而是要有一定程度的「條件限制」,有助於約束我們的想像力,讓平行現實的想像維持在可以執行的程度,這才能讓思考光架真正發揮效用。
書中舉了一個很像電影裡才會發生的真實故事「恩德培行動」,這是一個以色列精銳部隊在恩德培機場的行動中,從恐怖分子手裡救出人質的戰鬥情節。1976年,恐怖分子綁架了飛機上106名人質,關押在烏干達的恩德培機場航廈中。當時烏干達獨裁者跟以色列當局並不友好,出動軍隊肯定不是好的選項。另一個方案是讓突擊隊員假裝成獲釋的巴基斯坦犯人,但太容易被看穿了。還有人提議讓突擊隊員降落在機場旁的湖裡,但是湖裡有許多鱷魚,而且任務結束之後這麼多人該怎麼全身而退?
評估了各種可能選項後,在種種條件限制之下,以色列想出了一個奇招:讓突擊隊搭乘運輸機在夜間降落到機場,搭乘機場內常見的車輛前往航廈,消滅恐怖份子、救出人質之後搭乘運輸機直接回國。他們在空軍基地搭建了航廈的等比例模型,透過少數獲釋的人質口中知道人質的大約位置,並且一次又一次地排練所有行動,講究到每一秒、每一步該怎麼進行。
在一個沒有烏雲的午夜,29位突擊隊員搭乘運輸機降落機場,他們身穿烏干達軍隊的服裝開著機場車輛前往航廈。突擊隊以迅雷不及掩耳的速度突擊航廈,只花了十分鐘就解決所有的恐怖分子,然後就帶著人質直接搭乘運輸機返回以色列。整場行動中只有三位人質喪生,而且連烏干達政府都還來不及反應。這個故事從天馬行空的平行現實裡,限縮了各種條件,找出了最可行的方案,最後成功執行了這次任務。
.
【重啟另一種思考框架】
當你想要解決一個全新問題的時候,尤其是還沒有人曾經解決過的問題,你可能會感到不知所措。這個時候,先透過兩個步驟來思考:(1) 先從自己腦袋裡的框架庫找找看,有沒有其他適用和類似的框架、(2) 檢查其他不同領域的框架庫,看看有沒有能夠直接借用,小幅度調整就可以使用的框架。
如果這兩個步驟都找不到適合的框架庫,那麼才嘗試最困難、也是最後的殺手鐧:「發明新的思考框架」。作者提醒道:「切換到不同的思考框架,能讓你對世界有不同的觀點,但這也有風險。」一旦你重新找到一個新的思考框架,帶來的報酬可以是相當可觀的。
書中有一個重啟框架的例子很值得我們參考,美國紐澤西南邊的小城市康登市為了改善當地的犯罪率,直接解散整個警察隊伍並且重整執勤策略。當時城市的治安非常糟糕,市容也很破舊,到處都會發生大小程度不同的犯罪。這還不是最慘的,警方栽贓、造假、暴力執法的情況更是屢見不鮮。民眾除了害怕黑道,也非常害怕警察。
當地首長找來社區領袖和居民共同商討,最後決定放棄頭痛醫頭、腳痛醫腳的貼膏藥方式,採取全新的執法策略。解散警隊之後,他們精挑細選和新聘任的警察,改變了巡邏的方式。他們逐家登門拜訪、自我介紹、談談可以幫忙居民什麼。警察在街頭舉辦派對,和民眾聚餐,和小孩打籃球。
過去的思考框架是「警方將人民視為罪犯」,但是新的思考框架則是「警民一家親」的社區群體,警察從原本打擊犯罪的戰士,搖身一變成了社區當中親切的守護者。最後,康登市的犯罪率下少了一半,謀殺率少了六成,警方過度使用武力的案件少了九成五。重啟思考框架的方式,獲得了前所未有的成功。
.
【創造多元性的四種策略】
作者指出,很多人可能會認為,想要擁有多元性就代表要接觸大量的想法和觀點,其實那是抓錯了重點。多元性的優勢不是來自於數量,而是來自於差異。找出七百個類似的想法,不如找出七個不同的想法來得有價值。如果一個工具箱可以有七種不同的工具,絕對會比擁有七百把錘子的工具箱更加實用。
如果我們想要擁有多元的思考框架,就是要刻意的去營造,以及一起維護,這並不是一次的成功就可以高枕無憂。如同貝佐斯在《創造與漫想》書中提到的:「這個世界要你與眾無異,千方百計把你拉向跟大家一樣,別讓它得逞。」人類本能的從眾傾向,以及社會自然而然的同質化趨勢,都需要我們自己刻意地、有意識地選擇,才能夠擺脫與眾趨同的自然發展,擁抱更加多元化的觀點和想法。
如果你想為自己的生活、家庭、工作環境創造出多元性的樣貌,可以採取以下四種策略:擁抱變化,運用教育,鼓勵遷徙,容許摩擦。
.
1.#擁抱變化
如果一個思考框架一直以來都行不通,最好的做法就是擁抱改變,試試看別種思考框架。書中舉例同性戀婚姻的推動者,把美國從1995年支持同婚的人從25%提高到2020年將近70%。以前的同志運動一直把婚姻當成是核心議題,也一直把爭取這種「法律權利」當作是重點。但是進展並不顯著。
當時那種法律思考的框架,講究的是「法律權利」,但就是沒有效果。那種框架太缺乏想像力、太唯物主義,沒有說服力。到了2000年,他們研究很多民意調查還有焦點團體的意見,想弄清楚大家到底還有什麼疑慮。他們去思考說要怎麼樣用大眾的思考模式來談。最後他們選定了一個價值觀的思考框架,鎖定大部分的人結婚的原因:「愛、奉獻、家庭」。
他們把同性戀婚姻不再當成一種自由或者是權利,而是對於愛的表達與承諾。他們漸漸的讓大家知道,世界上有許許多多不同的框架,而且都同樣正當。到了2011年,第一次出現的黃金交叉,支持的人數正式超過了反對的人數。根據調查,只有14%的人會說這是一種「自由」,而有32%的人會說這是一種「愛」,是一種人類的情感。最後在2015年聯邦最高法院正式裁定的用憲法來保障同性伴侶的結婚權利。這並不是強迫民眾接受某種特定的思考框架,而是讓各種不同的思考方式能夠共存。
.
2.#運用教育
要建立起多元的思考框架,從教育著手是非常有效的模式。美國有一個很有趣的研究,就是去看美國的白人父母和黑人父母怎麼跟孩子談論種族。發自內心一片好意的白人父母,通常不會去刻意談到種族議題,因為他們相信「種族色盲」這種做法比較能夠讓孩子避免成為種族主義者。
另一方面,黑人父母卻常常和孩子討論種族議題,在他們看來,這種種族色盲的做法就是在故意忽視各種明顯的歧視現象。例如逛超市的黑人被懷疑是小偷,開著車子卻無緣無故被警察攔下來,黑人孩子的家庭教育就是要強調看到「種族的各種顏色」在日常生活的各種影響。
最後,這些社會學家發現,種族色盲的框架正好是種族歧視的主要來源,白人父母雖然出自於好意不想強調種族之間的差異,但也在無意之間,否認了有色人種遭受到歧視的真實狀況。這種教育方式忽略了差異,抹去了多元性。要培養多元的思考,就必須認識到差異的存在,承認仍然存在的落差。
.
3.#鼓勵遷徙
如果我們能夠鼓勵遷徙及流動,人們會把自己的文化和思考方式帶到別的地方,促進融合和變化。曾經有學者研究各個區域和城市的經濟成敗因素,發現了這些地區成功背後的原因有三個主要的因素:「科技、人才、寬容」。作者認為,「寬容」是其中最關鍵的一項,那些現在最開放的地方,經濟表現就最好。因為這些地方有更大的思考地圖,會讓人能夠放手冒險,這也是思考框架多元化所造成的經濟紅利。
像是美國被譽為一個民族「熔爐」,但是最近比較像一個「燉湯」,也就是讓裡面的好料都還維持各自的形狀。像是韓國人會住在洛杉磯的韓國城,華人會住在舊金山的唐人街,拉丁美洲的族群住在德州南方,古巴人住在佛羅里達州,巴西人就住在波士頓。雖然這種文化融合的速度不像我們想像中的快速,但是不同的文化激盪之下,也為美國社會注入了很多元的觀點和看法。
.
4.#容許摩擦
把社會上的摩擦,看成是這個社會的優勢、而非缺點。作者說到:「如果在社會裡面維持思考框架的多元化,確實會讓人們彼此之間感覺到不安很衝突,就是因為大家要看到彼此的不同,而且還要可以彼此互動。但畢竟,大家觀點不同、意見相對,本來就是正常生活該有的模樣。」
哈佛法律學院的昂格(Unger)教授認為,如果要讓政治進一步的去中心化,就必須要用一些反事實的模型來做思考。他說:「當社會很果斷地沿著一條路前進的時候,應該要多方下注,以避免損失,也就是要允許在特定的地點或部門,跳脫一般的解決方案,實驗看看不同的國家走向會怎樣。」
昂格鼓勵讓社會充滿摩擦,也鼓勵教育上面要用辯證式的討論方式,不要讓社會被束縛在單一的版本,而是可以嘗試其他的社會組織方式。運用和擁抱多元的思考框架,才能擁有多樣化的各種策略,再從中選取適合的方案。
.
【對思考框架保持警覺】
這本書告訴我們,幾乎沒有錯誤的思考框架,只有不適合某種情況的思考框架。而且各種框架應該要有共同存在的權利。但是作者們提醒我們要保持一個警覺,他們說:「唯一要注意的是,這種慷慨的態度要有一個前提,也就是說:『唯一』的一種錯誤的思考框架,就是拒絕其他的思考框架。」
要讓框架多元性的目的,就是為了讓各種框架可以彼此競爭、互補、對抗、共存。然而,如果有某一套思考框架的目的在於完全抹煞其他框架的存在,這就是不可被接受的。所以作者們才說:「如果你聽到有任何人或團體,說只有自己的思考框架放諸四海皆準,只有自己說的是真理的時候,千萬別相信。」
.
【後記:拓展想像的邊界】
如果說另一本我很喜歡的《超級思維》那本書是心智模型的「百科全書」,那麼《造局者》就像是心智模型的「使用指南」。書中有清楚的概念和步驟,讓我們了解為什麼要學習更多的心智模型,以及該怎麼樣活用各種心智模型,並且在必要的時刻推翻自己的假設,重新啟動一個新的心智模型。
這本書是今年我讀過的書裡面感到非常印象深刻,也讓我的思考方式深受啟發的。作者們把故事和理論的比例搭配得恰到好處,從一則又一則的故事和研究案例當中,會自然而然地理解作者們要帶給我們的觀點,也讓我感受到什麼叫做多元性,以及為何要擁抱差異。
從書中也可以發現,AI 並不會削弱心智模型的重要性,反而是增強了心智模型的重要性。因為 AI 無法自己建立思考框架,仍然只能依靠人類。人類最重要的特色就是可以處理「假設之外」的新問題,能夠把心智模型的空間拓展到可以親身體驗的範圍之外,也就是能夠做到抽象與推理。人類只靠著極少數的資料,甚至是完全沒有新的資料,就能夠適應全新的、過去從來沒有體驗過的情境。
作者最後提醒到:「這是一個救贖也是一個警訊:一個人如果擁有建立思考框架的能力,就會保有價值。但要是放棄了努力,沒有辦法做好這件事情,就會失去現在人類的特權地位。」我們能夠想像的邊界,就是我們世界的邊界。
.
Kobo 購書連結:https://bit.ly/3rRI8Kg
Kobo 電子書7折代碼:WAKIFRAMER
使用期限:8/15~8/21
.
感謝 天下文化 提供贈獎抽書
參數化設計定義 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
參數化設計定義 在 在地上滾的工程師 Nic Youtube 的最佳貼文
程式亂寫也可以動,要怎麼寫的好或易於閱讀,就得花上一番功夫去學習寫作技巧。
這支影片會和你分享一些基本的知識點,實戰技巧基本上當代程式語言開發都能使用
不過每個時代會有不同的想法跟觀點,不同的團隊也會有不一樣的慣例,希望這次的內容能夠給你一些不一樣的想法
喜歡影片的話!可以幫忙點個喜歡以及分享、訂閱唷!😘
章節:
00:00 提升品質的影響
01:29 有意義的命名比簡寫更好
03:01 限制傳入參數數量
05:03 簡化條件表達式
06:37 變數定義範圍限制
08:28 一次只做一件事
10:35 Early return
━━━━━━━━━━━━━━━━
🎬 觀看我的生活廢片頻道: https://bit.ly/2Ldfp1B
⭐ instagram (生活日常): https://www.instagram.com/niclin_tw/
⭐ Facebook (資訊分享): https://www.facebook.com/niclin.dev
⭐ Blog (技術筆記): https://blog.niclin.tw
⭐ Linkedin (個人履歷): https://www.linkedin.com/in/nic-lin
⭐ 蝦皮賣場: https://shopee.tw/bboyceo
⭐ Github: https://github.com/niclin
⭐ Podcast: https://anchor.fm/niclin
━━━━━━━━━━━━━━━━
✉️ 合作邀約信箱: niclin0226@gmail.com
#前端 #後端 #工程師
參數化設計定義 在 吳老師教學部落格 Youtube 的最佳貼文
TQC+Python基礎程式語言應用班第8次上課(406-504)
01_重點回顧與406不定數迴圈BMI計算
02_406不定數迴圈BMI計算程式說明
03_408奇偶數個數計算與改為不定數
04_複習星號輸出直角三角形
05_410直角三角形改為等腰三角形
06_410等腰三角形不同寫法說明
07_502乘積與定義函式
08_504次方計算與其他題目說明
完整教學
http://goo.gl/aQTMFS
吳老師教學論壇
http://www.tqc.idv.tw/
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/forum/#!forum/tcfst_python_2020_2
TQC+基礎程式語言 (Python 3)證照
Python 第1類:基本程式設計
技能內容:變數與常數、指定敘述、標準輸入輸出、運算式、算術運算子、數學函式的應用、格式化的輸出Python 第2類:選擇敘述
技能內容:if、if...else、if…elifPython 第3類:迴圈敘述
技能內容:while、for…inPython 第4類:進階控制流程
技能內容:常用的控制結構、條件判斷、迴圈Python 第5類:函式(Function)
技能內容:函式使用、傳遞參數、回傳資料、內建函式、區域變數與全域變數
上課用書:
Python 3.x 程式語言特訓教材(第二版)
作者: 蔡明志, 財團法人中華民國電腦技能基金會
出版社:全華
出版日期:2018/12/20
定價:490元
吳老師 109/6/23
EXCEL,VBA,Python,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境
參數化設計定義 在 吳老師教學部落格 Youtube 的最佳貼文
TQC+Python基礎程式語言應用班第8次上課(406-504)
01_重點回顧與406不定數迴圈BMI計算
02_406不定數迴圈BMI計算程式說明
03_408奇偶數個數計算與改為不定數
04_複習星號輸出直角三角形
05_410直角三角形改為等腰三角形
06_410等腰三角形不同寫法說明
07_502乘積與定義函式
08_504次方計算與其他題目說明
完整教學
http://goo.gl/aQTMFS
吳老師教學論壇
http://www.tqc.idv.tw/
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/forum/#!forum/tcfst_python_2020_2
TQC+基礎程式語言 (Python 3)證照
Python 第1類:基本程式設計
技能內容:變數與常數、指定敘述、標準輸入輸出、運算式、算術運算子、數學函式的應用、格式化的輸出Python 第2類:選擇敘述
技能內容:if、if...else、if…elifPython 第3類:迴圈敘述
技能內容:while、for…inPython 第4類:進階控制流程
技能內容:常用的控制結構、條件判斷、迴圈Python 第5類:函式(Function)
技能內容:函式使用、傳遞參數、回傳資料、內建函式、區域變數與全域變數
上課用書:
Python 3.x 程式語言特訓教材(第二版)
作者: 蔡明志, 財團法人中華民國電腦技能基金會
出版社:全華
出版日期:2018/12/20
定價:490元
吳老師 109/6/23
EXCEL,VBA,Python,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境
參數化設計定義 在 參數式設計應用於產品創作與探討 - 國立交通大學機構典藏 的相關結果
本研究以運用參數式設計工具當作產品創作的主軸,探討如何將參數化設計應用於. 設計過程中,考慮現有製造流程與參數模型之間搭配的方式,將設計過程及製程和傳統. ... <看更多>
參數化設計定義 在 參數化設計| Festo TW 的相關結果
透過參數化設計,可輕鬆將有機形狀應用於建築——Festo 已將其用於3D Cocooner 仿生 ... 例如,使用長、寬、高三個參數定義一個立方體,透過直徑和高度兩個參數定義一個 ... ... <看更多>
參數化設計定義 在 由參數化模型到參數化主義 的相關結果
參數. 化設計的優勢是將與設計相關的參數邏輯透過電腦運算解決,使得建築設計流程. 變成一種回饋性的機制。定義一個全新的「主義」或是建築宣言並不一定是舒馬. 赫的本意, ... ... <看更多>