▍中年夫妻的純友誼,只有在陪讀中,才能更持久
--「陪讀」就像夫妻倆一起辦了一項終身貸款,不管再苦、再難,最終不得不一起還債。--
俗話說「十年修得同船渡,百年修得共枕眠」,我看還得加上「千年修得共陪讀,萬年修得陪讀完了還能開心地共枕眠」……凡是能和諧陪讀還順便增進了感情的夫妻,那都是修練有道,就快成精了。
很多夫妻平淡如一潭死水,有小孩後瑣事一堆,火上加油。剛有點不想將就下去了,突然,孩子上學了,夫妻倆在陪讀中建立起新的聯盟,化身戰友,共同奮戰──五年過去了,七年過去了,夫妻倆雙雙成了擁有純友誼的學霸。
有天晚上送兒子去上樂理課,我和孩子的爸坐在路邊等孩子下課。那晚月色朦朧,微風陣陣,他陷入沉思,一言不發,像一個老實的相親男。
我主動搭訕,問:「你在想什麼?」
他說:「我在想下午兒子問我的那一題,我還是想不通到底怎麼回事。」
我說:「你可以現在趁他不在,偷偷研究一下。」
於是他含情脈脈地拉起了我的手,堅定地在我手心寫下了那道題目。
路過的大姐們紛紛投來異樣的目光,她們肯定在想:「哼,大半夜的,兩個人在這裡秀什麼恩愛。」而我,只想舉起手心讓她們長長見識──大姐別誤會,你們想歪了,我們在做數學啊。
在那個深秋的夜晚,什麼都不足以支撐起中年夫妻的內斂情感。中年夫妻間最真摯的獨白只有「這一題怎麼做」。這就叫「執子之手,與子學到老」。
如果不用教孩子,夫妻倆還能有什麼話題?──早飯吃什麼?中飯吃什麼?晚飯吃什麼?……多麼沒營養的夫妻生活啊。
但陪讀之後就不一樣了。夫妻討論的話題都是有深度和內涵的:零是有理數嗎?這個反比例函數題,是不是出錯了啊?原子光譜到底是什麼?……
他們真正成了對方的知己──知道自己這也不懂,那也不會。
老夫老妻消失多年的彼此仰慕之情,或許就在發現對方還能清晰地記得數學公式和物理定律時,重新出現。
但老夫老妻的默契、和諧,或許也就在發現對方連一句五年級古詩都背不出,或是八年級英語閱讀都看不懂的時候,轟然崩塌。
孩子的學習不是學習,那是家庭氣氛的風向球、夫妻關係的指南針啊!
試想,當你正在為看不懂孩子的考試題目發愁時,正在為配偶分擔不了教孩子的任務而生氣時,正在為別人家裡都有深藏不露的高手爸媽而懊惱時,孩子的爸突然跑出來說:「你去休息吧,這裡交給我。」
這感覺不是友誼回來了,簡直是愛情回來了。
中年夫妻在陪讀之路上,講究的是說學逗唱,哦,不,是望聞問切。隨著孩子知識量的提升和年齡的增長,我們愈來愈不敢貿然行事。
有次看到兒子趴在桌上,許久未動筆,我氣勢洶洶地跑進去準備發火,這時,兒子突然問我,「媽媽,這題怎麼做?」
我對著題目看了三分鐘,然後問他,「想吃水果嗎?吃蘋果,還是柳丁?」
這就是陪讀媽媽的道歉方式。
然後派雲配偶去干預。如果他陷入困境,我們就會產生同病相憐之情;如果他能教得好,我就會對他產生仰慕之情,甚至會把他的解題過程拍照存檔,以備生氣的時候拿出來看看,覺得又能原諒他了。畢竟,家裡需要有一個能教孩子理科的。
但不要過於樂觀。陪讀,並不一定百分百能增進夫妻感情,它也有一半的可能會摧毀友誼。
孩子念書認真、成績好,夫妻倆更容易琴瑟和諧,互相貼金;孩子念書如果吊兒郎當、成績一塌糊塗,夫妻倆只能撇清基因關係,互相抱怨,而且互相看不慣對方教孩子的方法。
有一次,孩子他爸的「陪讀體質」發作,非要教兒子一道難題。他先是一個人趴在茶几上研究半天,發到各個學霸群組裡求助,甚至求助於網路……好不容易才算出了答案。
然後他雄心勃勃地跑進房間,給孩子上課。只見他口若懸河,滔滔不絕,廢話一大堆,有用的沒幾句。
五分鐘後,我再進房間一看,聽不懂的孩子和說累了的老爸已經一起睡著了。
你看,這樣的陪讀品質,還不如放愛一條生路。
五分鐘前剛建立起來的崇拜和敬仰,隨著這一幕的到來,蕩然無存。別人家的爸爸怎麼那麼會教孩子?
不教孩子功課還好,一教就會亮起友誼的紅燈。
孩子前陣子的語文成績下滑,做閱讀理解老是跟讀天書似的。
我對孩子的爸說:「兄弟,你飽讀詩書,滿腹經綸,你去啟發啟發兒子吧!」
他說:「大妹子,你學富五車,才高八斗,還是你去教他一下吧!」
然後我們兩人搶廁所、搶做家事、搶著給貓鏟屎,能賴則賴,能溜則溜……好不容易建立起來的內部團結,在那一刻令人心酸。
當然,「陪讀」就像夫妻倆一起辦了一項終身貸款,不管再苦、再難,最終不得不一起承擔、還債。
.
本文摘自
《#了不起的硬核媽媽》
.
作者:格十三
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
各位朋友好:
我印象中,曾經看到國小孩子的「資優數學題」,感覺相當驚恐—我完全不知道該從哪裡解題下手?!
就不要說國中以上了,儘管我已經走過這個歷程,但我相信,大部分都還給老師了,新的知識也繼續累積了。生活中用不到,也就記不得了。
我很佩服某些家長,為了教孩子,真的拚了命。幾乎可以說是比孩子更認真,只為了能更容易地教會孩子。
但大部分來說,國中開始之後的考試就會難到爆,家長的努力也難回天。我記得有位作家,他的文章被選進課本了,但他拿起考他這一課的考卷時,他完全不知道該如何作答。作者本身都如此,家長也就更不用說了。
這時候,這段話還是有用的:「只要你別看,家裡就是乾淨的,只要你別聽,家裡就是平靜的,只要你別問,孩子和老公都是非常優秀的。」
祝願您,能在必要的時候,自欺欺人!
同時也有1969部Youtube影片,追蹤數超過4萬的網紅吳老師教學部落格,也在其Youtube影片中提到,Python基礎程式語言應用證照班第7次上課 01_重點回顧與308題增加外迴圈 02_308題改為for_each的寫法 03_308題改用餘數與除除方法 04_310迴圈公式計算解答 05_402不定數迴圈最小值解答 06_402不定數迴圈改用串列完成 07_404數字反轉判斷用文字串接解答 ...
反函數解法 在 Taipei Ethereum Meetup Facebook 的精選貼文
📜 [專欄新文章] 區塊鏈管線化的效能增進與瓶頸
✍️ Ping Chen
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
使用管線化(Pipeline)技術可以提升區塊鏈的處理效能,但也可能會產生相應的代價。
Photo by tian kuan on Unsplash
區塊鏈的擴容方案
說到區塊鏈的效能問題,目前討論度最高的應該是分片(sharding)技術,藉由將驗證者分成多組的方式,可以同時分別處理鏈上的交易需求,即使單分片效能不變,總交易量可以隨著分片/驗證者集的數量線性增加。
除了分片,另一個常用來提升程式效能的方案是將計算步驟拆解,以流水線的方式將複雜的運算攤平,降低系統的閒置時間,並大幅提升工作效率。為了達到管線化預期的目的,會需要先知道系統的瓶頸在哪。
區塊鏈的效能瓶頸
熟悉工作量證明設計哲學的人應該會知道,區塊鏈之所以需要挖礦,並不是為了驗證交易的正確性,而是要決定交易的先後順序,從而避免雙花和帳本分裂的發生。可以說,區塊鏈使用低效率的單線程設計,並付給礦工高額的成本,都只為了一件事,就是對交易的全局排序產生共識。
在這樣的基礎之上,區塊鏈在一段時間內可以處理的交易數量是有限的,這之中包含許多方面的限制,包括 CPU 效能、硬碟空間、網路速度等。其中,關於 TPS(每秒交易數) 提升和對硬體的要求大致上是線性增加的,但在設計共識演算法時,通訊複雜度常是平方甚至三次方的關係。
以現在的目標 TPS 來說,處理交易和生成一個合法的區塊並不困難,只是因為區塊鏈的特性,新區塊需要透過洪水法的方式擴散到全網路,每個節點在收到更新請求的時候都要先執行/驗證過區塊內的交易,等於整個廣播的延時會是「驗證區塊時間×經過的 hop 數量」這麼多。似乎網路越分散、節點越多,我們反而會需要降低計算量,以免讓共識不穩定。
管線化的共識機制
使用權益證明取代工作量證明算是行業發展的趨勢,除了環保或安全這些比較顯然的好處之外,權益證明對產生共識的穩定性也很有幫助。首先,權益證明在同一時間參與共識的節點數是已知的,比較容易控制數量級的邊界;其次,權益證明的出塊時間相較工作量證明固定很多,可以降低計算資源不足或閒置的機率。
相較於工作量證明是單一節點出塊,其餘節點驗證,權益證明的出塊本身就需要很多節點共同參與,瓶頸很像是從驗證轉移到通訊上。
以 PBFT 為例,每次產新區塊都需要經過 pre-prepare, prepare, commit 三個階段,你要對同意驗證的區塊簽名,還要對「你有收到某人的簽名」這件事簽名,再對「你有收到 A 說他有收到 B 的簽名」這件事簽名,過程中會有很多簽名飛來飛去,最後才能把一個區塊敲定。
為了降低每兩個區塊間都需要三輪簽名造成的延遲,後來的共識演算法包括 HotStuff 和 Casper FFG 採用了管線化的區塊驗證過程。也就是對區塊 T 的 pre-prepare 同時是對 T-1 的 prepare 和對 T-2 的 commit。再加上簽名聚合技術,出塊的開銷在複雜度等級和係數等級都降低許多。
然而,要保持管線化的區塊生產順利,需要驗證者集合固定不變,且網路通訊狀況良好。如果會經常更動驗證者集合或變換出塊的領導者,前後區塊間的相依性會是個大問題,也就是 T 的驗證者集合取決於 T-1 裡有沒有會導致刪除或新增驗證者的交易,T-1 的合法性又相依於 T-2,以此類推。
當激烈的分叉出現的時候,出塊跟共識的流水線式耦合就從優雅變成災難了。為了避免這種災難,更新的共識演算法會限制驗證者變更的時機,有些叫 epoch 有些叫 checkpoint,每隔一段時間會把前面的區塊徹底敲定,才統一讓驗證者加入或退出。到這些檢查點的時候,出塊的作業流程就會退化成原本的三階段驗證,但在大部分時候還是有加速的效果。
管線化的狀態更新
另一個可以用管線化加速的是區塊鏈的狀態更新。如前所述,現在公鏈的瓶頸在於提高 TPS 會讓區塊廣播變慢,進而導致共識不穩定,這點在區塊時間短的以太坊上尤其明顯。可是如果單看執行一個區塊內的交易所花的時間的話,實際上是遠遠低於區塊間隔的。
只有在收到新區塊的時候,節點才會執行狀態轉移函數,並根據執行結果是否合法來決定要不要把區塊資訊再廣播出去。不過其實只要給定了交易集合,新的狀態 s’ = STF(s, tx) 應該是確定性的。
於是我們有了一個大膽的想法:何不乾脆將交易執行結果移出共識外呢?反正只要大家有對這個區塊要打包哪些交易有共識,計算的結果完全可以當作業留給大家自己算吧。如果真的不放心,我們也可以晚點再一起對個答案,也就是把這個區塊執行後的新狀態根包在下個區塊頭裡面。
這就是對狀態更新的管線化,在區塊 T 中敲定交易順序但暫不執行,區塊 T+1 的時候才更新狀態(以及下一批交易)。這麼做的好處十分顯而易見,就是將原本最緊繃的狀態計算時間攤平了,從原本毫秒必爭的廣播期移出來,變成只要在下個塊出來之前算完就好,有好幾秒的時間可以慢慢來。新區塊在廣播的每個 hop 之間只要驗證交易格式合法(簽名正確,有足夠的錢付手續費)就可以放行了,甚至有些更激進的方案連驗簽名都省略了,如果真的有不合法交易混進去就在下個區塊處罰礦工/提案者便是。
把負擔最重的交易執行移出共識,光用想的就覺得效能要飛天,那代價呢?代價是區塊的使用程度會變得不穩定。因為我們省略了執行,所以對於一筆交易實際用掉多少 gas 是未知的。本來礦工會完整的執行所有交易,並盡可能的塞滿區塊空間,然而在沒有執行的情況下,只能以使用者設定的 gas limit 當作它的用量,能打包的交易會比實際的上限少。
緊接著,下一個問題是退費困難。如果我們仍然將沒用完的手續費退還給使用者,惡意的攻擊者可以透過發送 gas limit 超大,實際用量很小的交易,以接近零的成本「霸佔」區塊空間。所以像已故區塊鏈 DEXON 就直接取消 gas refund,杜絕濫用的可能。但顯然這在使用者體驗和區塊空間效率上都是次優的。
而最近推出的 smartBCH 嘗試擬了一套複雜的退款規則:交易執行後剩餘的 gas 如果小於 gas limit 的一半(代表不是故意的)就退款;如果剩餘量介於 50%-75% 可以退一半;超過 75% 推斷為惡意,不退款。乍看是個合理的方案,仔細一想會發現製造的問題似乎比解決的還多。無論如何,沒用掉的空間終究是浪費了,而根據殘氣比例決定是否退款也不會是個好政策,對於有條件判斷的程式,可能要實際執行才知道走哪條路,gas limit 一定是以高的情況去設定,萬一進到 gas 用量少的分支,反而會噴更多錢,怎麼想都不太合理。
安全考量,退費大概是沒希望了。不過呢,最近以太坊剛上線的 EIP1559 似乎給了一點方向,如果區塊的使用程度能以某種回授控制的方式調節,即使偶爾挖出比較空的區塊似乎也無傷大雅,也許能研究看怎麼把兩者融合吧。
管線化方案的發展性
考慮到以太坊已經堅定地選擇了分片的路線,比較激進的單鏈高 TPS 管線化改造方案應該不太有機會出線,不過管線化畢竟是種歷史悠久的軟體最佳化技巧,還是很有機會被使用在其他地方的,也許是 VDF 之於信標鏈,也許是 rollup 的狀態轉換證明,可以坐等開發者們表演。
倒是那些比較中心化的 EVM fork/sidechain,尤其是專門只 for DeFi 的鏈,管線化加速可以在不破壞交易原子性的前提下擴容,確實是有一些比分片優秀的地方可以說嘴,值得研究研究,但這就要看那些機房鏈們有沒有上進心,願不願意在分叉之餘也投資發展自己的新技術了。
給我錢
ping.eth
區塊鏈管線化的效能增進與瓶頸 was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
反函數解法 在 大詩人的寂寞投資筆記 Facebook 的最讚貼文
「利潤」究竟是什麼
這一講不是要講經商,我們小小地梳理一個大大的話題:從經濟學角度看,人生應該追求什麼。
簡單地說,最值得追求的東西是「利潤」。
我不信你會不想要利潤。利潤是收入減去成本剩下的那一部分,是收穫比付出多出來的部分。利潤是正的,說明你的一切努力都沒有白費,說明瞭社會對你的肯定。利潤要是負的,就說明你創造的價值配不上你的一番折騰。
但你要是細想,利潤是一個神秘的東西。
*
你必須直接去市場上買賣點什麼東西才談得上利潤。上班拿固定工資是沒有利潤的。哪怕你工資再高,那也只是你的勞動所得,都是根據你這個水平,你應該得的,是市場認為正好等於你的付出的回報 —— 這表現在你要是不上班就沒有收入。
而利潤則是「不該得」的東西,可以說是躺著賺的錢。這個性質曾經使得有些思想家認為拿利潤是不道德的。
馬克思譴責利潤。你開個工廠,買了機器和廠房,雇了工人,進了一批原材料,工人生產出產品,你把產品賣掉。然後你一算賬,賣產品的收入減去工人工資、機器廠房和原材料的花費,還多出來了一筆錢,這就是利潤。你欣然把這筆錢放入自己口袋。馬克思說且慢!工人累死累活工作才拿那麼一點工資,你幹什麼了就拿這麼多錢,你那叫剩餘價值!你無償佔有了別人創造的價值。
你當然不服氣。你說不是啊,我管理工人,我組織生產,我聯繫了進貨和銷售,我安排廠裡的大事小情,這怎麼不是創造價值呢?
馬克思會告訴你,你做的這些事兒的確也是勞動,你可以拿一份高工資,但你的工資不會像利潤那麼高。你完全可以雇一個職業經理人替你管理工廠。你把職業經理人的工資發了,還會剩下一筆錢,這筆錢才是真正的利潤。
這個計算讓馬克思深感憤怒,產生了深遠的影響……咱們還是單說資本主義這邊對此是怎麼想的。崇尚市場的經濟學家也算了這個賬,但結果是利潤好像不應該存在。
我們假設老張開工廠賺了一萬塊錢的「淨」利潤。這個是把老張本人付出的管理勞動該拿的那部分報酬去掉之後剩下的錢,是老張「躺賺」的錢。那如果是這樣的話,市場上就應該出來一個老李:老李說既然是躺賺,我不用那麼高的利潤,我躺賺五千元就行,我願意把商品賣便宜點,給工人工資高點。那你說老張能幹過老李嗎?
你很容易想到老張繼續存在的理由。比如老張有資本而老李沒有。或者老張跟政府關係好,壟斷了這塊業務。或者老張掌握一個技術護城河,老李學不會。但是對經濟學家來說這些都不是本質問題:資本可以貸款,跟政府的關係可以用一個更好的條件重新談,技術可以請人研發。事實上,經濟學家的推理是,哪怕現在還沒有一個具體的老李,只要市場存在老李出現的可能性,老張就不敢壓榨太高的利潤,他必須用比較低的價格和比較高的工資預防老李的出現。
要這麼算的話,市場充分競爭的結果一定會把利潤變成 0。總會有一個老王出來,說我就當自己是個職業經理人跟大家交朋友算了,我拿個應得的工資就行,利潤我不要。
那真實世界里的利潤是從哪來的呢?當然市場不可能是充分競爭的,總會有些老張偶爾能享受到利潤……但市場力量應該讓利潤越來越薄才對。經濟學家必須找到一個產生利潤的過硬的機制,否則解釋不了為什麼總有人拿那麼高的利潤……甚至解釋不了為什麼有人願意開公司。
*
利潤從哪裡來這個問題的解決,在經濟學史上是一個里程碑。1921年,美國經濟學家弗蘭克·奈特(Frank Knight, 1885-1972)出版了《風險、不確定性與利潤》(Risk, Uncertainty, and Profit)一書 [1],提出了一個傳世的洞見:利潤來自不確定性。
組織生產、採購和營銷、日常的管理,企業中一切常規的操作都可以由拿固定工資的人做,只有一件事必須由企業家本人做,那就是風險決策。
比如說,為了在今年秋季上市一批新女裝,我們必須在夏天就定下來款式,備工備料,展開生產。可是秋天還沒到,現在誰也不知道到時候流行哪個款式,那我們生產什麼呢?這個決策,必須由企業家本人做出。為什麼?因為他是承擔決策風險的人。
如果你賭對了,秋季正好流行這款女裝,因為別的服裝廠沒生產只有你生產出來了,你就佔據了稀缺,你就可以要一個高價,利潤歸你。你要是賭錯了,到時候服裝賣不出去,工人和經理們還是會拿同樣的工資,損失也歸你。
生產、日常管理、冒險,是三種不同的能力。為什麼企業家要開公司?因為他敢冒險。為什麼工人和經理人選擇拿固定工資?因為他們不想冒險。
這個道理聽著挺簡單,但是其中有個大學問。奈特之前的經濟學家也想到了企業家承擔風險,但是他們沒搞清楚到底什麼是風險。
*
如果女裝只有比如粉色和綠色兩個選擇,而且你明確知道它們流行的可能性都是 50% —— 那這個風險其實不用企業家承擔。因為你可以買保險!概率已知的風險都是可以管理的。銀行可以給生產兩款女裝的工廠都提供貸款,到時候肯定一個賠錢一個賺錢,只要利息和保險合適,銀行和企業雙贏。有這個保險機制在,大家誰都不用冒險,可以各自拿一份固定工資,根本不需要企業家。
奈特的真正貢獻在於,他把風險給分成了兩種。
第一種就叫「風險(risk)」,但是特指那些已知概率大小的風險。這種可以用保險解決,不需要企業家。
第二種叫「不確定性(uncertainty)」,是指那些無法評估概率大小,可能是從來沒出現過的新事物,甚至是現在人們根本無法想象的東西。這個不確定性,才是企業家存在的理由,才是利潤的來源。
現代經濟學家把這個不確定性特別稱為「奈特不確定性(Knightian uncertainty)」。我們專欄講過 [2],統計學家有個更科學的說法。已知概率大小的,叫做「偶然不確定性(Aleatoric uncertainty)」, 也叫統計不確定性。不知道概率大小的,叫做「認知不確定性(Epistemic uncertainty)」,也叫系統不確定性。前者發生的事情都是你事先能想到的,後者則是你想不到的。比如「黑天鵝」事件,就是一種認知不確定性。
你開一個賭場。賭場每天都在跟賭徒們賭博,但是因為輸贏的概率是固定的而且有利於你,所以你的日常經營本身並不是冒險。真正的冒險是要不要開這個賭場:你能預測客流量足夠讓你收回投資嗎?你能擺平當地黑社會嗎?你能確保政府發展博彩業的政策不會變嗎?這些事兒沒法計算概率。
搞定這些不確定性,才是企業家該乾的事兒,也是企業家的回報所在。
流行趨勢通常不能用以往的經驗判斷。有個企業家認准了一個全新的款式,說我非得生產這個,銀行能給他擔保嗎?這個不確定性沒法系統化管理,他自己必須承擔 —— 這才是企業家存在的意義。你要是願意給這樣的項目投資、分擔不確定性 —— 而不是把錢交給銀行拿固定的利息 —— 你也是企業家。
要做服裝這一行的企業家,你肯定得對流行趨勢有個很好的感覺才行。不過企業家本人不一定非得特別懂女裝 —— 他完全可以請人來給他設計,只是設計師不承擔不確定性,人家拿固定的設計費,風險還是要由企業家承擔。
簡單說,企業家,是市場上的 player。他拒絕聽別人的安排,非得按照自己的想法決定做什麼,然後他安排別人也按照這個想法去做,最後他獨自承擔後果。
*
奈特找到了公司存在的最根本理由。市場競爭再充分也不可能是絕對可預測的,未來總會有各種各樣的不確定性,需要企業家在各個方向上大膽探索。奈特後來成為經濟學的大宗師,他本人沒得過諾貝爾獎但是他有五個弟子得了諾貝爾經濟學獎,他是「芝加哥學派」的祖師爺。
奈特之後,別的經濟學家又找到了公司存在的其他理由。比如科斯說公司減少了交易成本能起到協調作用。張五常說公司提供了合約。還有人說公司解決了監督、提供了資源獨特性……等等等 [3],但是奈特這個「不確定性」的說法,是最根本的。
如果從某一天開始,世界上再也沒有不確定性了,那麼市場的力量就會迅速把公司利潤變成 0:企業家就不需要存在,大家都應該拿固定工資。
其實現在企業家的日子也不好過。我們看街上那些餐館,開了關關了開,真正能長期賺錢的沒有幾家,可能大部分老闆都是賠錢。沒有稀缺是不可能賺到錢的,但是利潤只發生在你剛剛掌握某種稀缺、而別人還沒有跟上的那個時間段。別人跟上了,模仿了,你就必須再去尋找新的不確定性。
一切賺錢的生意都有不確定性。你把一大筆錢放銀行裡拿利息,那叫躺著花錢不叫躺著賺錢。哪怕是買幾套房子收租金,你都得面對房產市場的不確定性。
世界上沒有一勞永逸的利潤,也沒有真正躺著賺錢的企業家。
那你說平均而言,企業家的收益是正的還是負的呢?我到底該不該去做個企業家呢?沒有答案。有答案就不叫不確定性了。
*
不確定性都是從哪來的呢?一個有意思的不確定性是中國經濟學家張維迎在 2008 年的一次演講中說的 [4]。他說中國改革開放這麼多年之中,商業活動最大的不確定性,是「體制的不確定性,政策的不確定性,政府行為的不確定性。」這體現在政府對資源的調配非常隨意。
張維迎當時說,正是這個不確定性加劇了中國的貧富差距。在中國市場化程度高,體制不確定性低的地區,比如浙江省,人們更富裕,收入差距反而更低:因為利潤分布更均勻。
這個規律是不確定性越大,利潤就越高 —— 企業家為利潤而奮鬥,但是市場看不見的手恰恰在降低總利潤。是那些看得見的手,提供了額外的不確定性,才給人帶來不合理的利潤。
那你說如果我們把體制給理順,讓競爭越來越公平,未來的不確定性會不會越來越少呢?不一定。
*
奈特列舉了不確定性的好幾種來源,比如未來人口的變化、資源的供給等等。其中我們現代人最關注的肯定是創新。創新本質上是不可預測的,你不知道未來會有什麼新技術出來,你也不知道一個新技術出來會不會被市場接受。一切創新都有強烈的冒險成分,關於這一點已經有太多經濟學家討論了。
而奈特更厲害的一個洞見,則是「價值」的不確定性。說白了就是人的慾望的不確定性,你不知道未來的人喜歡什麼。奈特 1924 年發表了一篇文章叫《經濟學中科學方法的局限性》,說經濟學不僅僅是什麼資源的有效調配,把一個什麼價值函數最大化的問題,因為人的價值觀是會變的 ——
「人生在根本上是對價值的探索,是努力發現新價值,而不是照著現有的價值觀把生產和享受最大化。」[5]
一百多年前整天坐馬車的人沒有想要一輛汽車。2006 年以前的人並不期待智能手機。今天的多數人不能理解馬斯克為什麼非得讓人去火星。人生的終極任務不是滿足某種價值,而是發現和創造新價值。
因為這個見識,奈特後來被認為是個道德哲學家,而不僅僅是個經濟學家。
也因為這一點,你不需要非得是個企業家,也不一定非得拿金錢利潤。藝術家、教育家、每個工人和管理者、包括每個消費者,都可以是價值的發現者和不確定性的製造者。
只要把周圍的世界往你想的那個方向上推動一小步,就算是你的成功。
注釋
[1] 弗蘭克·奈特,《風險、不確定性和利潤》,中文有郭武軍、劉亮翻譯版,華夏出版社 2013。
[2] 精英日課第三季,哪種不確定性?什麼黑天鵝?
[3] 關於公司為什麼存在的理論發展總結,可參考向松祚,《新經濟學》第二卷,新經濟範式。
[4] 張維迎的這次演講首次發表於《經濟觀察報》2008年1月20日,修改後的文章曾收入作者主編的《中國改革30年:10位經濟學家的思考》。
[5] Frank Knight (1924), "The limitations of scientific method in economics」, 原文是「Now this, we shall contend, is not very far; the scientific view of life is a limited and partial view; life is at bottom an exploration in the field of values, an attempt to discover values, rather than on the basis of knowledge of them to produce and enjoy them to the greatest possible extent. We strive to "know ourselves," to find out our real wants, more than to get what we want. This fact sets a first and most sweeping limitation to the conception of economics as a science.」
反函數解法 在 吳老師教學部落格 Youtube 的最讚貼文
Python基礎程式語言應用證照班第7次上課
01_重點回顧與308題增加外迴圈
02_308題改為for_each的寫法
03_308題改用餘數與除除方法
04_310迴圈公式計算解答
05_402不定數迴圈最小值解答
06_402不定數迴圈改用串列完成
07_404數字反轉判斷用文字串接解答
08_404數字反轉用List反轉輸出
09_重點回顧與預告
完整教學
http://goo.gl/aQTMFS
吳老師教學論壇
http://www.tqc.idv.tw/
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/g/tcfst_python_2021_2
證照基礎程式語言 (Python 3)證照
Python 第1類:基本程式設計
技能內容:變數與常數、指定敘述、標準輸入輸出、運算式、算術運算子、數學函式的應用、格式化的輸出Python 第2類:選擇敘述
技能內容:if、if...else、if…elifPython 第3類:迴圈敘述
技能內容:while、for…inPython 第4類:進階控制流程
技能內容:常用的控制結構、條件判斷、迴圈Python 第5類:函式(Function)
技能內容:函式使用、傳遞參數、回傳資料、內建函式、區域變數與全域變數
上課用書:
Python 3.x 程式語言特訓教材(第二版)
作者: 蔡明志, 財團法人中華民國電腦技能基金會
出版社:全華
出版日期:2018/12/20
定價:490元
吳老師 110/9/2
EXCEL,VBA,Python,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境
反函數解法 在 吳老師教學部落格 Youtube 的最佳解答
Python基礎程式語言應用證照班第7次上課
01_重點回顧與308題增加外迴圈
02_308題改為for_each的寫法
03_308題改用餘數與除除方法
04_310迴圈公式計算解答
05_402不定數迴圈最小值解答
06_402不定數迴圈改用串列完成
07_404數字反轉判斷用文字串接解答
08_404數字反轉用List反轉輸出
09_重點回顧與預告
完整教學
http://goo.gl/aQTMFS
吳老師教學論壇
http://www.tqc.idv.tw/
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/g/tcfst_python_2021_2
證照基礎程式語言 (Python 3)證照
Python 第1類:基本程式設計
技能內容:變數與常數、指定敘述、標準輸入輸出、運算式、算術運算子、數學函式的應用、格式化的輸出Python 第2類:選擇敘述
技能內容:if、if...else、if…elifPython 第3類:迴圈敘述
技能內容:while、for…inPython 第4類:進階控制流程
技能內容:常用的控制結構、條件判斷、迴圈Python 第5類:函式(Function)
技能內容:函式使用、傳遞參數、回傳資料、內建函式、區域變數與全域變數
上課用書:
Python 3.x 程式語言特訓教材(第二版)
作者: 蔡明志, 財團法人中華民國電腦技能基金會
出版社:全華
出版日期:2018/12/20
定價:490元
吳老師 110/9/2
EXCEL,VBA,Python,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境
反函數解法 在 吳老師教學部落格 Youtube 的最佳解答
Python基礎程式語言應用證照班第7次上課
01_重點回顧與308題增加外迴圈
02_308題改為for_each的寫法
03_308題改用餘數與除除方法
04_310迴圈公式計算解答
05_402不定數迴圈最小值解答
06_402不定數迴圈改用串列完成
07_404數字反轉判斷用文字串接解答
08_404數字反轉用List反轉輸出
09_重點回顧與預告
完整教學
http://goo.gl/aQTMFS
吳老師教學論壇
http://www.tqc.idv.tw/
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/g/tcfst_python_2021_2
證照基礎程式語言 (Python 3)證照
Python 第1類:基本程式設計
技能內容:變數與常數、指定敘述、標準輸入輸出、運算式、算術運算子、數學函式的應用、格式化的輸出Python 第2類:選擇敘述
技能內容:if、if...else、if…elifPython 第3類:迴圈敘述
技能內容:while、for…inPython 第4類:進階控制流程
技能內容:常用的控制結構、條件判斷、迴圈Python 第5類:函式(Function)
技能內容:函式使用、傳遞參數、回傳資料、內建函式、區域變數與全域變數
上課用書:
Python 3.x 程式語言特訓教材(第二版)
作者: 蔡明志, 財團法人中華民國電腦技能基金會
出版社:全華
出版日期:2018/12/20
定價:490元
吳老師 110/9/2
EXCEL,VBA,Python,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境
反函數解法 在 [微積] 這麼做的嚴謹理由何在?(難) - 看板Math - 批踢踢實業坊 的推薦與評價
https://ppt.cc/br_g
解法一開始,兩邊同取 ln 函數,然後 blah blah blah 的往下做下去。
我有疑問,兩邊同取 ln,左跟右等式仍相等,但結果上我們完全無法掌握才對。
打個比方,x=4,兩邊同取 f(x)=x^2 這個函數,得 x^2=16。
一開始的方程式的解是 {4},可是「兩邊同取...」之後的解,是 {4,-4}
,會有增根的問題。
為什麼圖片裡的原文書上可以大膽的兩邊同取ln,
不會改變結構(解集合、ordered pairs)嗎?
有趣的是, |(x^2-3x-4)/(x^2-7x+9)| <=1,
這種絕對值不等式,如果用
(x^2-3x-4)/(x^2-7x+9) <=1 且 (x^2-3x-4)/(x^2-7x+9)>=-1
來看,要解兩次一元二次不等式,再把解集合取交集才能得原不等式的解,麻煩。
可是如果換個做法,兩邊平方,只要解一個不等式就ok,
而且也不必驗算了,我們確定在這種不等式的左右兩邊同取平方100%不會增根或漏根:
(x^2-3x-4)<=(x^2-7x+9),解出來的解集合是誰,原不等式的解集合就是誰!
1. 到底我們是怎麼判斷什麼時候同取函數會增根,什麼時候不會呢?
2. 圖裡的左右同取 ln,背後是什麼理由支撐它?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.25.17.111
※ 編輯: alfadick 來自: 114.25.17.111 (05/11 22:40)
我想超久了想不出來@@,可以寫詳細嗎。
X=Y =====> F(X)=F(Y),
有時候要回去判斷 F(X)=F(Y) =====> X=Y ,好像很難耶
另外,為什麼 IFF 的式子就不會增減根,有證明嗎?
所以跟反函數有關嗎?
X = π
===> sin X = sin π <=> sin X = 0 <=> X = 0,π,2π,3π,4π,...(無限解)
真的耶,聞到味道了,真的跟你用什麼f(x)套在兩邊有關 >_<
f(x)=x^2 ,二對一,增一個根
f(x)=sinx ,無限對一,增無限個根
※ 編輯: alfadick 來自: 114.25.17.111 (05/11 22:59)
可是好像也怪怪的,
X=4 ,平方無反函數, X^2=16,增根
|x| = 4 ,也兩邊同取無反函數的f(x)=x^2,可是就沒增根耶
是不是跟你本身用誰去套有關?有沒有可能要同時考慮函數的特性跟定義域是誰
那這樣單純講反函數並不太對啊,有沒有更一般化的系統
※ 編輯: alfadick 來自: 114.25.17.111 (05/11 23:01)
先不管微分,先管第一步為什麼可以同取 ln
※ 編輯: alfadick 來自: 114.25.17.111 (05/11 23:03)
... <看更多>