結合 3D 列印與拓墣最佳化,軟體機器人設計流程大幅改進
作者 Alan Chen | 發布日期 2021 年 07 月 12 日 17:50 |
新加坡科技設計大學研究團隊,近期在《進階材料科技》期刊發表研究成果,運用逐漸成熟的 3D 列印以及拓墣最佳化技術,大幅改進現有軟體機器人的設計流程,使材質運用、結構強度和運動表現都優於傳統設計生產方式。
軟體機器人(Soft Robots)是受到軟體動物及海洋生物的啟發,使用軟性材質製造,可做出與傳統硬性材質機器人不同的運動方式與功能,是機器人工程的一項新興領域。
由於先前缺乏一套有效的設計工具與流程,軟體機器人設計多半以手動方式打造機體,在誤差控制上較缺乏效率,因此由 Valdivia Alvarado 博士帶領的團隊,以 3D 列印的方式改善機體製造的穩定性,並使用拓墣最佳化(Topology Optimization, TO)技術,在輸入機體外型規格數據後,讓電腦以數學模型快速計算出最佳的內部結構組成,使設計和生產流程速度和穩定度提升許多。
研究團隊運用這一套設計組合,打造一款魟魚造型機器人,這款軟體機器人運用海洋生物的流體力學設計,加上軟性材質機體,可以在水中達到比傳統遙控潛水艇更快的速度,和更靈活的轉向。
在機體設計過程中,除了軀幹部分使用軟性材質外,最重要的魚鰭部位,研究團隊分別使用傳統設計方式,打造出硬性和軟性材質的魚鰭,再加上運用 TO 技術計算出來的混合材質,共三種構型進行實驗。
實驗結果顯示,使用 TO 技術與 3D 列印打造出來的混合材質魚鰭,在速度、強度和靈活度表現上,都比傳統方式設計的材質提升了 50% 以上。
Alvarado 博士指出,新的設計工具使得將來的軟體機器工程領域,設計者能夠更快速特製自己的機器人,並且減少機體打造過程的誤差,以及結構設計上的盲點,將使軟體機器人領域的發展進度更加快速。
附圖:▲帶領研發團隊的新加坡科技設計大學 Valdivia Alvarado 博士。(Source:SUTD)
▲研究團隊使用 3D 列印與 TO 技術,打造一種魟魚造型的水中軟體機器人,擁有更好的水中運動能力。(Source:lowjumpingfrog from Salt Lake City, USA, CC BY 2.0, via Wikimedia Commons)
資料來源:https://technews.tw/2021/07/12/sutd-team-advanced-the-design-flow-by-combining-3d-printing-and-to-technologies/
實驗誤差來源 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
跨界圍攻:「AI 視覺」公司已集體殺入智能駕駛圈
2021-05-22
雷鋒網
如今的智能汽車賽道,說挨肩迭背也不為過。
新勢力派引領變革,最為二級市場所看好;泛網際網路派占流量高地,擅技術遷移;傳統車企派根基夯實,品牌名聲享譽在外。
甚至財大氣粗的某地產派也曾放下豪言――力爭 3-5 年成為世界規模最大、實力最強的新能源汽車集團。
如華山比武般,大俠們個個嚴陣以待,各方勢力黃巾高擎,左右開弓。
你看看,前有行業鐵幕,中夾破釜沉舟之心,後是險峻江湖,哪還有初進牛犢的落腳之處?
即便如此,在月前燥熱尚未消退的上海車展後,鮮少被提及的AI視覺公司還是擠了進來。
看慣了巨頭們的聲勢浩蕩,轉身發現AI視覺企業們的入局講究一個循序漸進,起承轉合。
而他們的悄然進入,也給智能駕駛領域增添了幾段新故事。
海康威視:左手自研、右手投資
AI安防老大哥海康,深耕智能駕駛市場履行一貫的低調風格。
其對智能駕駛的綢繆始於2015年,當時海康內部計劃開展新業務,起初確定的業務有三:海康汽車電子、海康機器人、海康螢石。
2016年7月,耗資1.5億的海康汽車技術正式成立。
在此前後,海康還分別於2016年6月投資了威視汽車科技,2017年7月成立了海康汽車軟體。
2018年是海康智能駕駛的上升之年,市場渠道、技術研發上均有突破。
2018年2月,他們上線高級駕駛輔助系統、自動泊車APA+,同年又成功打入2019款保時捷卡宴的配置中。
汽車產業以穩為重,鏈條長、利益盤根錯節,新入者切入並不容易,而海康卻出其不意一舉打入高端。
數據顯示,截至2018年底,海康汽車已經通過了20家OEM的審核並成為其合格供應商,公司的主要客戶包括一汽集團、北京汽車、上汽榮威、上汽名爵、本田汽車等。
其中,定點項目超過200個,已量產的項目超過100個,覆蓋500家渠道合作夥伴。
成立子公司自研之外,投資也是海康較為看中的一大路徑。
在成立汽車電子公司之前,海康就曾在2016年入股毫米波雷達企業森思泰克,並成為後者的第二大股東。
2013年成立的森思泰克既是毫米波雷達第一批探路者,也是成績較為優秀的領軍企業之一。
森思泰克創始人秦屹是英國海歸的雷達專家,在英從事雷達研發和製造十餘年。
據悉,森思泰克所聚團隊成員中80%具有軍工背景,掌握雷達硬體、軟體和量產工藝等幾乎全部核心技術。
據悉,森思泰克毫米波雷達在北京、石家莊設研發中心,在蕪湖設總廠,在杭州設車載事業部。
石家莊,有軍工雷達大本營之稱,軍民毫米波雷達研發人才密集,且電科雷達研發54所和13所都在石家莊。
森思泰克也頗為爭氣。
2019年,思泰克首次實現大批量77GHz車載毫米波雷達國產化、突破國際巨頭壟斷。
森思泰克的77GHz毫米波雷達成為國內首個真正實現「上路」的ADAS毫米波雷達傳感器。
目前,森思泰克已成為紅旗、一汽、韓國現代、東風日產、長城、長安等國內外車企體系內供應商。
海康與森思合作的高分毫米波成像雷達+視覺融合技術,或許將對壘低線束雷射雷達。
大華股份:立足整車,三電、網聯、自動駕駛多點齊發
零跑汽車脫胎於大華股份的汽車部門,獨立後獲得了大華股份的技術和資金支持。
2015年,大華股份副董事長兼任大華股份CTO朱江明親自下場,成立零跑。
經歷2019年新能源補貼大退坡,不少新勢力造車企業已經出現嚴重資金問題,且變現存疑。
零跑汽車亦不例外。
2018年,零跑虧損 3.07 億元後,2019 年上半年又持續虧損約 2 億元。
2019年1月4日,零跑汽車第一款車S01上市,該車2019年全年交付約1000輛。
對於連續虧損的零跑,唱衰論一直也在網上發酵。
朱江明對此表示,「即使不融資,零跑也能再活三年。」他透露,大華股份將持續為零跑輸送資金,「當然我們希望能更多的融資,發展得更快些。」
在經歷融資受阻後,2021年伊始,零跑官宣融資43億元,合肥政府投資平台亦在其中。
今年年初,此前曾投資蔚來的合肥市政府與零跑方面簽訂戰略合作協議,未來合肥方面將對零跑B輪融資投資約20億元,並展開更多合作。
現金流方面,從不被業界看好,到巨額融資的到帳,仿佛又讓市場看到了可能性。
技術層面,零跑汽車稱自主研發了三電系統、智能網聯繫統、自動駕駛系統三大核心技術,並完全掌握自動駕駛核心硬體平台和算法技術,實現對自動駕駛感知、決策、執行層關鍵技術的自主化全覆蓋。
產品層面,零跑汽車目前旗下擁有3款量產車型,分別為:零跑T03、零跑S01以及零跑C11。
三款產品風格各異,銷量不一。
2020年,零跑汽車官方消息稱,2020年累計銷量達11391輛,其中T03為主力軍,貢獻了10266輛。
創始人朱江明也底氣頗足:「2023年零跑進入造車新勢力TOP3、2025年在國內新能源汽車市占率達到10%」。
商湯:求精感知技術,並進艙內艙外
與其他AI獨角獸相比,商湯在自動駕駛上布局較早,也更全面。
2017年進軍自動駕駛,商湯的汽車產業布局可分為艙內(智能車艙)和艙外(智能駕駛)兩大層面。
智能車艙層,基於前裝量產解決方案,以視覺感知技術為錨點,由點及面,覆蓋用戶從上車到用車的多個場景。
商湯的SenseAuto Cabin智能車艙解決方案包括駕駛員感知系統、座艙感知系統、智能進入等等功能。
據悉,在過去的兩年多時間裡,商湯已經拿下了30多個國內外頭部夥伴的智能車艙定點量產項目,覆蓋車輛總數超過1300萬輛,其中10 余個項目已經實現了量產交付。
智能駕駛層,商湯選擇與主機廠合作,做汽車廠商(OEM)及一級供應商(Tier1)的解決方案供應商。
在自動駕駛感知、決策和執行三大要素中,汽車廠商和Tier1占據重要角色。
2017年,商湯與OEM廠商本田簽訂了為期5年的長期合作協議,研發適合乘用車場景的L4級自動駕駛方案。
2018年,商湯完成杭州、上海半開放場地內實現無接管自動駕駛。2019年,在日本落地「AI自動駕駛公園」,將用於自動駕駛汽車的研發和測試,並面向公眾開放。
商湯的自動駕駛業務定位,是以視覺為主,其他元素為輔。
視覺之外,商湯在高精度地圖和雷射雷達、毫米波雷達等方面皆有技術儲備。
通過搭配多種不同傳感器,實現感知、分析預測、決策規劃控制、城市級三維地圖重建及無人車高精度定位能力等技術功能。
目前,商湯對自動駕駛技術進行了多次疊代,形成了一套較為成熟的智能駕駛方案:SenseAuto Pilot智能駕駛解決方案,聚焦 L2+ 級高級輔助駕駛至L4級自動駕駛創新,並在上海車展首次發布SenseAuto Pilot-P駕駛領航方案。
軟體之外,2019年3月,商湯還推出首款原創機器人SenseRover X自動駕駛小車,這是款針對自動駕駛的教學產品。
奧比中光:戰投+自研,兩條腿走路
奧比中光是AI初創企業中對智能汽車投入最多的公司之一。
作為一家AI 3D感知技術方案提供商,成立於2013年的奧比中光現今已在3D傳感領域深耕近8年。
3D傳感作為人工智慧領域最核心的視覺感知技術,融合了晶片、算法、光學、軟體等多交叉學科技術,是人工智慧時代感知識別、新型人機互動等最為核心的技術載體。
除3D結構光外,奧比中光在雙目、iTOF、dTOF、雷射雷達等主流3D視覺感知技術領域也有長遠布局。
早在2018年,奧比中光就投資雷射雷達晶片級解決方案提供商飛芯電子。
飛芯電子成立於2016年,是一家專注於光電設備、雷射雷達研發、集成電路設計的高新技術企業。
成立僅2年,飛芯電子獲得了博世等注資。
據悉,飛芯電子以研發、生產雷射雷達系統及核心晶片為主要業務,客戶群體主要面向國內外汽車、機器人、無人機等生產研發廠商。
飛芯電子稱,其針對行業痛點,採用了連續波載調製或相干外差探測方案,利用焦平面點雲測距技術,滿足較高的空間解析度和較大的視場角,探測距離可超過200m,且無需複雜昂貴的機械掃描裝置,不斷提高系統可靠性,也使獲得的圖像更為清晰。
2019年4月,奧比中光成立車載3D視覺傳感方案提供商奧銳達。
奧銳達的業務重心在智能座艙,產品包括ToF攝像頭模組、雷射雷達等硬體以及3D ToF智能座艙方案。
承襲了奧比中光的3D視覺感知技術,奧銳達可為智能汽車帶來DMS、OMS、手勢識別、人臉識別、身份驗證等多種3D化智能功能。
其金融級安全的3D人臉識別方案,保護駕乘人員的信息安全;通過3D-ToF 攝像頭,實現多區域手勢控制;同時,智能汽車還可以通過3D信息,判斷駕乘人員體型、座艙內位置等。
近日,奧銳達還發布了為智能汽車量身定製的3D ToF智能座艙方案。
虹軟:主攻艙內,走軟硬一體之路
2018年,為應對手機市場見頂飽和,虹軟正式將業務從智慧型手機領域拓展至智能汽車、IoT等領域,一舉橫向突進自動駕駛市場。
虹軟科技創始人兼CEO鄧暉曾表示,未來每輛汽車裡都有10個以上的攝像頭,智能座艙將成為智能駕駛視覺AI的重點應用場景。
與其手機定位一樣,虹軟的智能汽車走軟硬一體解決方案,力圖做車載視覺一站式解決方案的供應商。
從招股書看,截至2018年底,虹軟科技的「汽車等loT產品」的業務收入僅367.95萬元,占比不足1%。
與多數視覺企業加裝雷射雷達等技術不同,虹軟的的自動駕駛解決方案完全基於視覺層面,且核心聚焦在車內智能。
虹軟科技的智能駕駛視覺解決方案,包括車內安全駕駛預警、駕駛員身份識別、車內安全輔助、輔助駕駛預警、自動泊車等眾多解決方案。
2019年3月,虹軟入股開易(北京)科技,後者主營業務包括主動安全智能終端(ADAS+DMS+人臉識別)、SDK軟體服務以及硬體整體解決方案。
2019年,虹軟在科創板上市。
虹軟表示,其在計算機視覺領域積累深厚,融合其暗光高反差拍攝、防抖等影像視頻增強算法技術,即使在車內光線不佳、人臉角度多變、車輛晃動等特殊情況下,也能夠很好地完成車輛周圍環境監測和車內人員監測等功能。
上市後,虹軟大力布局智能汽車及其他 IoT 智能設備領域,目前成效初現。
據虹軟表示,智能汽車板塊2019年開始真正量產。
數據顯示,2020年,智能駕駛視覺解決方案業務增長較快,實現營業收入6592.99萬元,同比增長310.61%。
據悉,虹軟智能駕駛相關產品包括DMS(駕駛員識別系統)、ADAS(高級駕駛輔助系統)、BSD(盲區檢測系統)、OMS(乘客識別系統)、Interact(視覺互動系統)、Authenticate(生物認證)、AVM(3D環景監視系統)、AR HUD(AR抬頭顯示)和智能後備箱等各類以核心算法為基礎的相關軟體解決方案。
高工智能汽車研究院數據顯示,DMS(駕駛員識別系統)的算法業務是其智能汽車業務的主要收入來源。
虹軟今年透露,其智能駕駛業務已實現37+7個前裝車型定點開發(37款量產車型定點,7款車型預研),以提供純算法為主,公司直接與Tier1或整車廠簽約,涉及多家國內主流車企(含造車新勢力)及部分合資車企。
格靈深瞳:最早入局,協同成長
成立於2013年,格林深瞳是最早的一批AI視覺公司,也是最早一批投入自動駕駛的AI視覺公司。
當年,格靈深瞳聯合英特爾研究院院長吳甘沙、國家智能車未來挑戰賽冠軍團隊負責人姜岩等一同創辦了一家專注於自動駕駛領域的公司――馭勢科技。
2016年,馭勢科技在北京誕生,格靈深瞳作為投資方入股馭勢科技。
過去五年,馭勢科技在洶湧潮水中奮力前行。
2017年1月的CES,馭勢科技向世界推出了無人駕駛概念車「城市移動包廂」,該車型成為了全球第三款獲得紅點設計大獎的無人車。
同年,這家公司分別在4月和6月,於白雲機場、杭州來福士率先展開面向普通公眾的無人駕駛商業化運營。
今年1月21日,香港國際國際機場宣布,由馭勢科技與香港國際機場管理局共同研發的無人駕駛物流車將替代人力駕駛拖車,承擔往返機場和海天客運碼頭的行李運輸任務,意味著其在機場的運用已逐步上量。
在過去的一年中,馭勢科技與長安民生物流、一汽物流、巴斯夫(BASF)等數十家企業建立了商業合作。
據透露,在國內某豪華品牌車型上,馭勢科技提供的軟體算法也已前裝量產,並幫助該自主品牌率先推出 L3 級自動駕駛功能。去年馭勢科技交付了數百套「AI駕駛員」,實現年度業績同比增長150%。
前不久,馭勢科技宣布完成累計超10億元人民幣的新一輪融資,在這場融資中馭勢科技獲得了國家資本的參投。
馭勢科技在無人物流埋頭苦幹,潛心鑽研,其成績是在無人物流領域的業務布局幾乎占到了國內市場的70%。
2016年誕生至今,馭勢科技經歷萬千辛酸,在密如繁星的棋子中探索出一條最優解法,以機場定式,在精進自我的路上捨命狂奔。
而格林深瞳的自動駕駛之路,也隨著馭勢科技越走越遠。
曠視:立足AI視覺,做車載全套解決方案
2018年11月,曠視曾公開展示過車載AI視覺解決方案。
彼時的曠視,其解決方案基於車載系統和駕駛過程的人臉解鎖、帳戶切換、駕駛員識別、多模態交互等功能為主,並收取相應軟體使用費和服務費。
「人臉解鎖」可通過車外的攝像頭捕捉駕駛員人臉信息並進行身份的識別與確認,實現人臉解鎖車門、臨時授權人臉解鎖車門;
通過車內的攝像頭實現刷臉啟動發動機、保險箱等,「帳戶切換」功能可通過人臉識別無感知精準識別駕駛員身份,配合車載智能系統,快速調整用戶預設的車輛各項個性化配置(座椅位置、反光鏡角度、空調溫度、音樂、燈光、導航等)。
「駕駛員識別系統」可通過車內攝像頭,實時查看駕駛員駕駛狀態和行為,在駕駛員出現疲勞駕駛或分心駕駛跡象時觸發預警,保障行車安全。
曠視曾表示,其與蔚來汽車實現了未來在智能汽車應用上的深度合作,真正的無人駕駛商用較遠,曠視聚焦對人類駕駛員的理解和輔助。
的盧深視:基於3D視覺相機,為產業賦能
的盧深視在智能汽車領域的角色,更多是與第三方合作的方式。
作為三維視覺領域的佼佼者,的盧深視在高精度深度感知成像、三維實時高精度重建、三維跟蹤識別及感知等技術方向上深耕多年。
上月,的盧深視出席了2021全球自動駕駛高峰論壇,並展示了其最新3D CV相機及其應用。
的盧深視兩款自研3D CV相機,其在5米範圍誤差小於1mm,指標超越國際3D相機巨頭,量產良率達99%以上。
基於前端低功耗嵌入式平台,兩款相機均可實現非接觸式精準識別,基於結構光原理,更可還原人臉高精度3D細節信息,通過人臉立體尺寸信息精準辨識人員身份,同時對於二維和三維攻擊識別正確率高達99.99%。
多提一句,安全性上,可達金融級別。
據悉,除了智能汽車領域,兩款相機也在智能家居、金融支付、智慧交通等領域展開布局。
智能駕駛:AI視覺第二春
AI視覺眾企入局智能駕駛賽道,並非跑題創作。
其一,布局智能駕駛,是戰略向外牽引使然。
自計算機視覺出走實驗室樊籠,AI安防、自動駕駛便拿到一大波投資人的「S卡」。
當年AI落地之時,安防提供了絕佳的土壤,AI公司在此實現技術與產業的交融。
期間,AI與安防彼此成就:
安防向世界輸送的海大宇等驕子,幾乎主導了全球安防市場話語權,行業極速擴容,向城市各個領域蔓延。
AI獨角獸們也從安防起家,並逐漸走向千行百業,邁向全域。
左邊是AI安防成主要營收來源,右邊是AI安防逐漸占領一席之地。擺在入局者眼前的,是如何保持縱向持續增長的必答題。
擺脫路徑依賴,尋找AI安防之外的市場,已是當務之急。
如果說,過去五年,AI視覺公司的路徑是「通用AI SDK 重定製集成項目實施」的話,那麼未來五年,他們可嘗試「非標領域的標準市場 形成標準化產品 低成本規模化複製」的路子。
非標領域的標準市場在哪?自動駕駛、醫療、晶片赫然在列。
縱觀AI市場,目光所及賽道幾近全員虧損,掘金志認為,與高成本人力無關,因為虧損在放大;與硬體儲備也無關,因為可以OEM。
核心在於:AI安防未能標準化,項目需求又無窮多。
那就去標準化市場?有人問。
標準化市場可以一夜之間把價格做到無窮低,但高額運營支出非AI企業所能承受。
標準化市場上不去,定製化市場下不來,AI公司的突破口在哪?答案是:非標準化市場裡找到標準化路子。
賽道上,自動駕駛正是明顯的非標領域的標準市場。與AI安防共通的是,智能駕駛初創企業也依賴資本輸入。
但前者場景碎片化、項目定製化,產品標準化之路漫漫;後者以智能汽車為載體,技術上軟體定義、人機協同一旦成型,會一招吃遍天下鮮。
眼下,不少智能駕駛新勢力已實現產品量產,並獲得一定規模的現金流。
對於一眾搶灘的各路豪傑,AI視覺的入場似乎有些遲。
但智能汽車賽道正熱、格局未定,智能汽車產業鏈長、細分領域繁雜,此時入場的AI視覺,你可以說它入場稍晚,但不能說它機遇不在。
其二,自動駕駛或是計算機視覺技術應用必登之高峰。
近幾年,機器學習持續深入,計算機視覺應用亦有了飛速進展。
千山萬水跨越的人臉識別小山,是AI最成功,也最基礎的一環。
真正的AI,是貫穿感知-決策-執行的長鏈條,這一點在自動駕駛上體現得尤為極致。
感知層,通過各類硬體傳感器捕捉車輛的位置信息以及外部環境信息;
決策層的「大腦」,基於感知層輸入的信息作環境建模,從而形成對全局的理解並作出決策判斷,再向車輛發出執行的信號指令;
最後的執行層,將決策層的信號轉換為汽車的動作行為。
自動駕駛技術是人工智慧、高性能晶片、通信技術、傳感器技術、車輛控制技術、大數據技術等多領域技術的結合體,落地難度之大,各路AI無不動容。
計算機視覺應用場景萬千,自動駕駛無疑是極具挑戰性、最具想像力的一條。
越是長在懸崖之巔的花,越讓人著迷。
一直以來,在環境感知環節,存在AI視覺與雷射雷達技術路徑之爭。
不管何種路徑更優,已經在視頻物聯領域經歷過殘酷驗證,AI技術儲備上,AI視覺企業們也已攢下不少經驗。
狼多肉少,能吃幾成飽?
「自動駕駛是很低級的行業嗎?所有人都想來分一杯羹。」
這調侃入局者們聽了,大抵會覺得分外委屈。
大多數困在第一道門檻,錢。
「沒有200億不要造車」的聲量振聾發聵,造車明星蔚來也曾資金一度跌入谷底。
雖說AI視覺公司除了大華的零跑汽車外,其他參與者目前都專注於智能駕駛硬體和系統,但這也是個昂貴的行當。
不少企業本身依靠資本輸血,是否有更多資金和精力參與自動駕駛廝殺,是他們需要思考的問題。
行業壁壘不容小覷。
汽車產業發展百餘年才形成了一套嚴謹而完整的生產流程和制度,乃至於衍生出了一套基於安全的工業文明,不是後來者們在短短的幾年時間裡就能夠顛覆的。
作為智能汽車的核心體現,自動駕駛技術遠未達到成熟的程度;車艙內的智能化體驗也還有豐富的想像空間。
換言之,如果跨界選手想要在智能汽車的世界裡找到自己的一席之地,不僅要高度重視安全這一話題,還要擁有強大的軟體能力。
但在前一輪前沿傳統主機廠以及蔚來、小鵬、理想等新造車勢力的人才軍備賽過後,新入局的玩家要如何吸納更多的專業人才?又如何權衡來自世界各地的人才的意見和建議,從而做出最終決策?
與此同時,智能汽車的研發不是一件只要懂軟體就能夠做成功的事情。
隨著電動化、智能化大潮的到來,造車的門檻看似降低了不少,但在這一過程中遇到的內因外因的難題,可能遠比想像中的要多。
行業資源尚需積累。
相比AI安防、智慧城市等領域,AI視覺跨界者在智能汽車領域品牌影響力和渠道資源不足,短期內,造血盈利能力較低。
而且,AI視覺企業布局智能駕駛時間不一,技術雖有共性但終究有別,相較於大多數垂直企業,尚有諸多不足。
故可見,過去幾年,即使AI視覺巨頭,步伐也較為謹慎,大多圍繞艙內智能、ADAS市場。
如果說巨頭們跨界,自帶熱搜體質,AI視覺企業跨界的光彩,多少暗淡了些。
前者身家優渥,拿著頂流體驗卡入場,高屋建瓴,後者更多是以小舟,涉鯨波。
當然,隨著技術日進一桿,資源聚沙成塔,營收逐年增長,他們將投入包括但不限於研發、營銷、資本等層面,難保這一葉扁舟,哪天出其不意成為可遠航的重磅郵輪。
莫道桑榆晚
眾多跨界玩家湧入智能汽車,激發了新的生機。
無論從何種角度來看,智能汽車的市場都蘊藏著無限機遇。
這個市場需要鲶魚的存在。
在新時代的風潮之下,我們固然期待看到不斷有實力強勁的新玩家們入局,留下中國智能汽車史上濃墨重彩的一筆。
我們也殷切地希望,這是一片能夠承載百花齊放,充滿新的生機和活力的沃土,而不是拔苗助長的投機者的港灣。
憑藉先發優勢,不少入局者或已暫列行業前位,但隨著各方力量的持續加碼,後來居上也並非不無可能。
保持警惕,時刻成長。
資料來源:https://www.chinahot.org/science/83632.html?fbclid=IwAR2Mm9ZU17srF7sCywqUPw-hmRAyGN_sN9XnL0_Q6mE4bUYwUpgGNX3wHps
實驗誤差來源 在 健身教官-應充明Jimmy Facebook 的精選貼文
《身體記憶比大腦學習更可靠》
這是一本”找感受度”的書
當你要教一個小朋友騎腳車, 游泳, 或是任何技能時, 會鉅細彌遺地把所有執行方法交代清楚才讓他們開始嘗試嗎? 又或者說, 每一個人都會騎腳踏車, 但是隨便找一個人描述一下他們怎麼可以一遍前進一邊維持平恆其實是有困難的
在近代, 絕大多數的學校教育都遵行的笛卡爾”我思故我在” 的身心二元論: 人類的心智是由大腦發展出來的, 而身體只是智慧的一個載體. 因此所有學校教育全力注重在語文數學社會之類的理論課程上, 體育課的時間相對被壓縮. 因為人們相信使用統計化與系統化的學習, 可以有效地提升邏輯與辯思能力, 這也是被認為是未來人類發展的主要方式
從傳說笛卡爾製造了一個女兒的機器人開始, 人類就開始醉心於人工智能的開發. 而過去幾年, 機器首先在西洋棋盤上擊敗了人類之後, 最新的技術AlphaGo也在數年前連續三次完勝人類的圍棋冠軍柯潔! 至此, 人工智能的新紀元降臨, 電腦的運算速度與儲存資訊量是人類所遙不可及的!
完了完了, “機械公敵”的電影世界要成真了..
可是真的是這樣嗎?
我們在街上可以看見越來越多裝配有輔助駕駛的車子, 但是不管什麼品牌的車商, 一開始信誓旦旦的跨下海口他們可以在幾年知道製造出第五級自動駕駛的汽車商 (100%不需要人類), 在過去幾年之中紛紛宣布: 要達到這個目標比他們想像中的困難 (但是只有馬斯克對此還表示出非常大的信心)
在自動駕駛系統中, 設計師把所有的汽車動作透過數據而模組化, 讓它們可以經過運算而在路上控制車體的動作. 但是最大的困難就是在不管是任何道路之中的實際情況是瞬息萬變的, 包含突然改變的風速, 掉落的障礙物, 無預警闖入小動物等等, 這些都與在有固定範圍以及明確規則下的棋盤內不同. 所以我們知道, 將一個醫療機器人放在手機製作的生產線上一定會出現大問題, 因為外在環境已經改變了, 與在電腦內原先預設的演算程式不一樣, 工作人員除了改造外形之外, 也需要重新設計所有軟體
當你聞到了一個熟悉的麵包味道, 回憶會馬上把你拉回兒時放學時經過一家麵包店的情景; 當你看到了前男/女友留下來的一個小物品時, 腦中馬上會浮現在當初在相處時對於這個東西的回憶; 當你聽到了一首流行老歌時, 時空在瞬時間會轉換回到學生時代, 可以讓你徜徉其中不可自拔
我們所認知的世界, 除了先經過大腦的思考與分析之外, 也靠我們其他的感官所汲取的資訊同時輸入所建構起來, 這就是”體驗”. 身體的感知能力, 就是記憶的中心. 在學習時, 讓全身的感官同時參與, 就可以幫我們打造更多層次的大腦地題, 這也是我們在運動時常常提到的”本體感覺”. 我們的五感 (視覺, 聽覺, 觸覺, 味覺與嗅覺) 從身體各處接收到無數資訊後, 轉化為電位傳回中樞神經系統, 而形成了第六感: 直覺
有的時候迷路時, 你會很自然地知道要往哪一個方向轉彎; 在很短時間內要做一個決定時, 你當下會不假思索地做出選擇; 甚至是你可以下意識的分辨出你眼前的這個人是否在說謊. 這些都是直覺, 而直覺靠的就是所有感官經驗的累績. 這不是透過系統模組化與運算就可以做得到的
書中有提到好幾個例子: 華爾街的金融顧問僅僅使用統計分析的數字來決定未來的投資方向, 但是到最後對於市場的預測往往與實際上有很大的落差; 一些消費用品的廣告鎖定了特定的目標族群, 但是經常發現與與想像中買氣完全不一致. 因為第一, 數據呈現的是一個平均值, 無法表明一些誤差的來源, 第二, 冷冰冰的統計結果沒有情感, 無法體現消費者實際市場上瞬息萬變的思考模式
在我個人的記憶力就有一個印相很深的例子: 在某一年, 我服務的某一間公司很大器的砸重金買了上海地鐵二號線一個月的廣告, 二號線總長度接近70公里. 他們在車廂內所有的拉環上都貼上了健身房的廣告, 主打: 在每一站的出口都會有一間xx健身房! 他們希望透過這一波宣傳來大力提昇該月的來訪數. 結果, 隔一個月開高層會議時, 發現前一個月花了大筆鈔票的過靠成效幾乎等於零… 那個月市場部總監被臭幹到差點從樓上跳下去…
可是為什麼會這樣? 因為假如實際每天坐地鐵通勤的人都會知道, 沒人真的去看拉環上寫的是什麼, 所有人都是瘋狂低頭滑手機! 而偏偏當初做這個決定的人, 每天都是開車上下班, 就算有搭乘地鐵, 也只有偶一為之, 所以無法真正的掌握實際狀況
打不死的蟑螂, 存在在地球上的歷史比人類還久, 時至今日, 他們唯一的天敵就是拖鞋. 而我們都有過滿屋子追著小強跑的經驗, 有的時候快把家都翻過來了還不一定打得到牠們, 更別說牠們給你來一了一個更大的驚喜, 飛了起來!!!
蟑螂的大腦只有一百萬的神經元, 而人類卻有一千億個. 但是牠們的腳上卻有無數的知覺接收器官, 可以接收外在的溫度, 壓力, 以及物體移動. 其實另外一個更好的例子就是章魚 (有興趣的可以看一下’’我的章魚老師”)
人類有模仿的本能, 之前1977年的一個實驗就發現出生僅12天的嬰兒的表情就會隨著在他們面前實驗人員的改變而改變. 所以當我們在學習一個新事物的時候, 必須要有一位效仿的對象可以讓我們就近觀察. 在細看他們的過程當中, 我們很自然的會使用上我們所有的感官去做揣摩, 進步是最快的. 所以在每一行業之內, 要最快進入狀況就是找一位師傅或是前輩, 除學習他們的知識以外, 也是吸取他們的技巧與經驗
在看這本書時我一直聯想到我們的這個圈子..
運動也是一樣, 你怎麼可能從書本的圖片就學會怎麼臥推? 你要如何從影片中就學會怎麼深蹲? 這些學習的方式正如人工智能一樣, 把運動分段, 模組化, 但是這些方式無法與你互動, 無法及時給你口令與指導
商業健身房的經理主管每一天瘋狂的開會逼業績, 指責教練為什麼會員約不來? 預約數太少? 他們有沒有實際在健身房中與會員聊過天, 觀察過每一個時段人流的改變? 了解一下目前的環境是否存在一些什麼問題?
有些教練不斷的進修, 認為這樣可以不斷的提升他們的專業度. 但是卻無法理解為什麼自己都這麼苦口婆心了, 會員還是無動於衷? 但是真的願意放慢角度來好好發揮同理心體會一下會員真正想法的教練也不多
因此, 過去我們都把人腦視為一個精密運算的電腦, 但是現在看來, 遠遠不足夠, 還要搭配身體的力行, 強化所有感知與智慧緊密搭配, 才是進步最快的方式
我非常同意功能性訓練大師Michael Boyle的主張: 他完全不建議在健身房內放鏡子. 確實, 在運動時如果我們過度依賴視覺, 反而會削弱其他感官訊息的輸入. 所謂的”本體感覺”, 就是我們可以掌控到我們的身體在什麼速度下, 輸出了多少力量? 移動了多少的距離? 關節與肌肉如何相互的影響?
我覺得這一本書可以讓我們重新的檢視我們學習或是教學的邏輯, 走出過去侷限我們的思考框架, 任何事情使用理智的分析建構固然重要, 但是身體在學習過程中的各種體驗也是不可或缺的, get your hands dirty, 讓我們實際將自身的所有的體驗與大腦連結, 創造出一個更加全面的身心成長!
實驗誤差來源 在 邱博文物理實驗(0-8):數據處理(8)誤差的種類 - YouTube 的推薦與評價
a.系統 誤差 (systematic errors):此種 誤差 的特徵是所有的測量值都比真值偏大或偏小。這類型的 誤差 可分為儀器 誤差 (instrumental errors)因為儀器校正 ... ... <看更多>