加速了十年的世界(二)
上星期分享了(一)大加速(二)強者恆強(三)現金為王,我們一起來接著看看其他幾個觀點:
四、大分散
不只區塊鏈帶來了去中心化,COVID-19帶來的疫情也讓我們的世界愈來愈分散。
Amazon奪走實體商店再把店家分散到我們家門口,疫情加強也加速大家在網路上購物的行為;
Netflix與或其它影音串流平台接下電影院的地位,把電影院放在我們的客廳與房間;
醫療照護產業,在美國,過去不被保險規定支持的遠距離醫療、遠距離開立處方,已經在疫情的影響下被接受了,而這樣的規定未來被改回來的機會不大;
食品雜貨業以前所未見的速度朝向分散的趨勢轉型,從2020年三月初到四月中,線上雜貨的銷售大約增加90%,食品運送的銷售額則成長50%,這個轉變帶來基礎設備的更新,從倉儲到客戶關係的深化,都不會隨疫情結束而消失,並且將改變食品運銷系統。(前陣子三級警戒期間,我老婆為了兼顧安全與健康,堅持餐餐自己下廚,對新鮮食材的需求大增,所以我們上網訂購了蔬果箱:選好自已想買的新鮮的蔬菜水果,由廠商幫忙挑貨然後直接送到家。而我們並不是少數這樣做的家庭,很顯然大家已經接受這樣的食物配送方式,而不再堅持一定要自已親手挑揀蔬菜水果)這樣的分散在未來會出現在更多產業。
另外像家具用品、行動裝置的銷售也會因為大分散這個趨勢而大幅度成長,如果我需要花更多時間待在家裡,不管是工作或是娛樂,我都希望自已有更舒適的沙發、更好的音響與電視、更棒的居家空間。
五、「品牌時代」讓位給「產品時代」
「Covid-19在美國的致死率是0.5~1%,在美國的媒體產業,公司淘汰率是它的十倍以上。」被淘汰、面臨危機或是衰退的都是品牌時代的大師。
「二次世界大戰結束到Google問世之前,創造合於一般水準、大量生產的產品,為它注入一些無形的聯想;接著透過廉價的廣電媒體來鞏固這些聯想……品牌時代從令人喘不過氣的製造業手中奪下指揮棒……創造出廣告大師、行銷部門、以及行銷長的職務……這套演算法在平庸的產品(美國汽車、淡啤酒、廉價食物)裡注入情感,為利害關係人創造數萬億美元的價值。」
而品牌時代在一連串相互影響的因素中,如Google、臉書的出現,加上把財富從廣告中解放出來的科技...等,也終於來到尾聲
還有人記得Tivo嗎?可以讓你預先設定好時間錄下想看的電視節目的數位錄放影機,只要你擁有它然後願意花一點點時間完成計畫,除了可以在任何時間看自已想看的電視節目外,你也不用再看到廣告。
Tivo標誌著從品牌時代轉移到產品時代的開始(花再多錢做廣告,都無法提升平庸產品的形象了,因為可以直接被跳過),2020年夏天則是品牌時代的結束。
「在品牌時代,剛到一個新城市的有錢旅人會吩咐他的司機送至麗思酒店(Ritz),因為這是他認識的品牌。然而,在產品時代,這位有價值的消費者一下飛機先查自已的手機,她知道麗思酒店才剛翻新過,評論者認為它的房價太高,於是她透過眾籌推薦改選一家位在時髦地段的精品酒店」(甚至我們更愛從Airbnb找到自已更喜歡的住宿地點,連品牌都不用了)
「在這場轉變中的輸家,是在品牌時代裡為打造品牌廣告提供平台的媒體公司,以憑藉創意製作這些廣告的廣告代理商。」
臉書和Google在股市裡的表現證明了這個事實:2015年8月到2020年8月,臉書成長174%,Google成長114%,其它老牌廣告行銷公司像IPG、陽獅集團Publicis、WPP集團等是-9%到-63%不等。
景氣黯淡的時候,廣告預算會縮水,這是大家都可以理解的事,但是當景氣復甦,錢潮重新回流,只會流向產品時代的廣告媒體公司,所以未來Google和臉書這對雙巨頭在數位廣告市場勢必會繼續輾壓品牌時代的廣告老兵們。在2020年公佈的數位廣告預算分配比例,臉書加上Google,就拿下了61%。(不過深入探討這個數字,會發現這個趨勢造成更嚴重打擊的的其實是臉書或Google之外的數位行銷公司。BuzzFeed和Yelp在2020年的展示型廣告比起2019年衰退40~70%,Vice跟其它類似的公司也會跟進,只有一些,能撐過加護病房活下來。)
六、紅與藍
數據vs隱私;販賣隱私權vs付費保護隱私
「基本商業模式有兩種:(一)公司用高於製造成本的價格把東西賣出去(二)公司的產品可以免費送人,或以低於成本的價格賣出去,然後跟取用產品的其他公司收費,這裡的產品指的是:消費者的行為數據。」
這也就是在現代商業世界中不可忽視的規則:當你在免費使用某項產品/服務時,你自已其實就是被賣出去的產品。
但是現在愈來愈多隱私外流、資安問題的新聞出現(好萊塢女星私密照外流、劍橋分析事件…等),越來越多人重視跟保護自已的隱私,甚至願意付費保護這些被證明非常珍貴的無形價值。
「過去我們用我們的時間交易價值,如今我們用我們的隱私來交易價值」
「安卓手機每天向使用者收集1200個數據點,傳回Google數據挖掘的母艦。iPhone手機擷取200個,同時蘋果不厭其煩強調它的數據不是用於謀利」
「安卓的使用者是以隱私交易價值的芸芸大眾,iOS則是享受隱私和地位的有錢人,以砸下含稅1249美元的費用(超過匈牙利人一個月的平均家庭收入)來換取價值443美元(製造一台iPhone的成本)的感應器和晶片組。」
安卓是紅色,iOS是藍色。
「你可以在YouTube上得到免費的影視娛樂,不過它的內容是個大雜燴……十之八九你會收到一些煽動、挑釁的內容……。另一方面,Netflix的運作取用『藍色』/iOS的模式:你付費,你得到內容;你是客戶,內容很精彩。」YouTube是紅色,Netflix是藍色。
以社群媒體來說,目前幾乎都是紅色,Facebook、TikTok是紅色:免費的服務,大量榨取我們的個人資料,甚至是用我們不理解的方式巧取豪奪。
「2020年六月,TikTok被揭露它每隔幾秒就掃描使用者的剪貼簿,甚至連它的app只在背景運作時也照掃不誤。這家公司已經承諾停止這種作法(在它的動作被iOS的新安全系統抓個正著之後)。使用臉書或許不會讓你的個人數據被上傳到中國共產黨的數據雲裡,但是臉書過去保護使用者隱私的不良紀錄來看,這不過是因為中國人喊價輸給了一個烏克蘭青少年,……」
搜尋引擎也一直是紅色的,但是藍色的搜尋引擎也即將登場。
「蘋果專有的iOS搜尋勢不可當,你可以期待蘋果很快就會買下DuckDuckGo,或是推出它們自已的搜尋引擎。除此之外,Google廣告部門的前主管斯里達爾.拉瑪斯瓦米(Sridhar Ramaswamy)不久之前推出Neeva,這是採用訂閱模式的Google新對手。」
「同樣的,過去十年來最創新的公司也抓住亞馬遜剝削它的客戶(第三方零售商)的機會。Shopify的價值主張很簡單有力:我們是你的合夥人。你可以掌控自已的數據、品牌、以及消費者的監護權。」
「越來越多產業會出現這種紅藍分野的融合。從航空業到速食業,一些低成本的賽局參與者將充分利用消費者的數據,把省下來的錢用在它們的『廣告資源位』上頭--抱歉,我的意思就是『消費者』。至於頂級的參賽者,則會高舉保護隱私的隱私大旗,藉由不濫用消費者的數據而收取優渥的利潤。」
有人願意犧牲隱私把自已當產品賣掉換取免費的服務,但也有越來越多人願意支付合理的費用保有自已一切的所有權。就像「駭客任務」裡墨菲斯給尼歐選擇的紅藍藥丸,只不過藥丸裡包著的是你的隱私。
七、四巨頭
很多人應該都聽過「FAANG」或「FAAMG」,沒聽過至少也用過他們的產品,科技巨頭在我們的生活中已經是不可或缺的存在了,我們現在是活在大型科技公司的世界中。而這些巨頭們在疫情期間或是疫後的未來,會是什麼光景?
「2020年3月到7月,五個月的時間裡,九家主要的科技公司市值增加1.9兆美元:Google、微軟、Netflix、臉書、蘋果、亞馬遜、Paypal、特斯拉、Shopify。」
「這類產業裡的龍頭大哥,『四巨頭』,亞馬遜、蘋果、臉書、Google,加上微軟,這五家公司在2020年上半年股市成長了24%,總計市值增長超過1兆美元。到了八月中,它們從年初到現在的這段時間獲利成長47%,達2.3兆美元。……這五家公司,占了美國所有公開上市公司市值的21%。」
「去掉一些科技業龍頭公司之後,主要股市指數在2020年中其實是下跌。在科技股之外,眾多美國資本主義的雄獅也都被拔了爪:埃克森美孚(Exxon Mobil)、可口可樂(Coca Cola)、摩根大通( JPMorgan Chase)、波音(Boeing)、迪士尼(Disney)以及3M公司,它們半年的股價約下跌30#,市值損失總計將近五千億美元。」
作者的第一本書對這個論點已經有很精彩的探討,在本書中進一步更新了現況並進一步分析未來,簡單來說,就是巨頭們會利用自已的地位與資源竭盡所能保護自已的優勢。這些大型科技公司獨占寡頭們打敗了體制,反托拉斯警察跟輿論也不是對手。它們能把自已的企業核心打造成「飛輪」:物理學裡一個可以利用自已旋轉動能儲存能量的系統,把能量傳導到附近的引擎,讓企業可以隨著飛輪的旋轉,不需增加輸入(也就是成本),就能不斷增加輸出(也就是營收)。亞馬遜的Prime就是個終極飛輪,蘋果的手機電腦與品牌旗下其它穿戴式裝置(手錶、耳機)也是它的無敵飛輪(光是在2019年,蘋果的可穿戴式裝置包括Apple Watch、AirPods耳機和子公司Beats,就創造了超過兩百億美元的營收,比麥當勞還更多),其它巨頭們也都有自已的飛輪可以強化各自的寡占優勢。剛且別忘了,巨頭們可以用極低的資金成本取得它們需要的錢,因為有多到難以想像的資金在尋找標的。四巨頭也開始出現無所不在的擴張,像是派送服務、可穿戴式裝置、串流媒體,都可以看到它們的身影。至於「反托辣斯法案」能不能打破他們的寡占?作者針對現況說了一句貼切卻無奈的事實:「藉著燃媒動力的亮光寫出的法律,對數位化的寡頭公司起不了作用」
八、破壞性創新
「在一個產業裡,破壞性創新的機會可能和一些因素相關—稱之為可破壞指數(disruptability index)。它的關鍵信號,是在價值或創新沒有相伴增加的情況下價格明顯增加。」
在美國,兩個準備出現破壞性創新的產業:高等教育產業與醫療衛生產業。
美國高等教育的破壞性創新指數已經爆表。過去四十年大學學費增加1400%,(消費者物價指數只增加了294%,一向在價格上歐被批評的美國醫療保險也「只」增加了600%),但是提供的產品與服務並沒有相對應的上升,甚至已經不再是提供階級流動機會的助力,菁英大學甚至變成傲慢的奢侈品牌與一套種姓制度,一個把特權傳遞給一代的管道。學生貸款也因此總額達到1.6兆美元,遠超過信用貸款或汽車貸款的金額。
疫情會催化高等教育的演進,而轉型的核心在於科技—線上課程。因為線上課程可以大量招收學生而沒有空間與時間的限制,因此能減低學費並提升入學率,並恢復大學擔任美國社會向上流動的潤滑劑角色。
在高等教育與醫療產業外外,許多公司賣的,基本上是同樣大量生產、平庸水準的產品,在品牌時代,它們因為投資在行銷與打造品牌上的投資而得以溢價出售。不過轉變到產品時代後,許多二十世紀主導企業的競爭優勢將被侵蝕,因為消費者對品牌資產的依賴,已經出現變化:「如果你的公司欠缺電子商務競爭力,則已經開始受創,因為相隔十年後的世界(也就是—現在)對於不符水準的『直接面對消費者』模式毫不留情。」
Airbnb是破壞創新者、Netflix是破壞創新者、羅賓漢(Robinhood,金融服務企業,主要提供服務散戶的股票app與網站,在網上提供的服務完全免費,推出免佣金交易時讓其化參與者也不得不跟進,2020年時有1300萬用戶)、Shopify是破壞創新者(類似亞馬遜Pay和亞馬遜物流,為第三方零售商提供支付和物流,但沒有使用收集三方零售商的數據來挖取它自身競爭產品的銷售)、Spotify是破壞創新者、特斯拉是破壞創新者(紐約大學史登商學院的另一位教授亞斯華斯.達摩德仁Aswath Damodaran,有著「估值大師」的封號,曾說過:「如果你根據預期獲利或現金流來交易特斯拉股票,那你買賣它的股票理由就不對了。人們是靠氣氛和氣勢在交易特斯拉股票。」)、Uber是破壞創新者。(達拉.霍斯勞沙希Dara Khosrowshabi接任執行長後已做出莫大的改善,持續修復前任執行長造成的品牌形象巨大損傷,雖然還需要時間而且目前尚未有盈利,但是利潤正持續提升中)。許多新的機會在加速十年的這段期間出現,未來看世界的思維與角度,勢必在疫情過後的未來要重新建構。
在300頁的篇幅中滿滿的觀點,認同不認同,至少是作者自己親身經歷萃取出的營養,內容精純,含金量高,沒有太多老掉牙或是象牙塔裡的視角。有些趨勢或許我們已經隱約知道,但是透過作者的分析,我們能更清楚的看到未來很可能會出現的世界樣貌。
跟大家分享的只是一小部份的個人摘錄重點,想更深入了解作者實務經驗與看法,除了《疫後大未來》之外,《四騎士主宰的未來》可以當成前傳閱讀。
#jeffmachine #postcorona #newworld #deusexmachina #deustaiwan
(照片是去年拍的,經歷疫情大加速前的我😆)
手機 無法 感應 耳機 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
手機 無法 感應 耳機 在 鄧九雲 Joanne Facebook 的最讚貼文
▍今晚,想當哪種狗?▍九雲X亞妮五問五答
九雲問亞妮:
「這段疫情的日子,妳有沒有什麼新的體悟?」
好像自己的房間裡面一下熱鬧了起來,很多朋友從他們各自的房間伸出枝枒,對話、連接,不同房間結成一片樹林。雖然,我一直是很能跟自己相處的人,深夜黃昏,獨自散很長的步,把耳機裡的歌單聽成一場演唱會,這段時間總有種靜與鬧主場交換的感受。除此之外,也懷念起來不用量體溫的日子,過敏發作時,不必害怕他人因為噴嚏和鼻水,蜷退成車廂裡的蝦米。疫情中明白,原來自由的名字,真的有千百種,比如感冒自由與過敏自由。
「妳喜歡霍金的《時間簡史》,對妳來說,『時間』是什麼呢?」
對我來說,時間是愚人的魔術,聰明人不癡迷談時間,但我總是無條件站邊愚人。小時候跟著同學看NBA,好多朋友都愛過當時在76ers(76人)的Allen Iverson,但卻是在時間過後,他離開了球隊,我才開始後知後覺地支持起76ers,就像每回世界盃我一定會偏心當年賠率最高的國家隊。因為是癡人,所以喜歡時間,以及談論時間。後來才懂得,時間的單位不是年、月、時、分,是別離與癡傻,相信時間永恆的人、在時間裡逃竄與編改時間的寫作者,時間是弱者,時間是我自己,時間也是愛過的人。
「妳寫到關於保留『餘地』,才能從容以對。但在創作過程裡,『餘地』對我來說一直是件吊詭的事,好奇妳是如何掌握寫作中的『餘地』?」
說到餘地,我認為和我問起妳的「瀟灑」有點類似。因為有餘地,才能轉身、才能漂亮。如果有什麼對美的堅持,我當然希望哭也是漂亮的,但聽說我哭起來很醜⋯⋯離題了。大概就是因為,活著不可能不掉眼淚,就像不能不寫那些。既然不能不行也做不到,那麼人不美,離開就要美;說不出的訣別與決絕,就用空白格來說。
「書裡提到『下飯片』,讓我心有戚戚焉,有時生活就是需要一點無腦調劑。不知道在閱讀習慣裡,有沒有所謂的『下飯書』(可能不是配飯,但功用相同)?」
下飯片真的非常非常重要,我為此可以多次加熱飯菜,就像下飯書於我,也完全存在。有時候讀了一整天工作或寫作需要的書後,休閒時間裡,會繼續讀書(是瘋了嗎),可能讀手機的簡體書APP,或是論壇裡的連載小說,不然也可以看看《鬼滅之刃》更新回數,這些都能讓我天長地久的讀下去,我想我果然還是喜歡沒有盡頭的事。
「妳說『真』的相對不是假,是『虛』。詒徽在推薦(論)文裡說,妳下一本會是小說,我好奇妳怎麼看待不同文種的『真實』與『虛構』?」
是推薦(論)文沒錯,(再次)謝謝詒徽。
其實我自己對於文類的道德感很低下,不,也不是這麼說,就像妳說喜歡散文式的短篇小說(這也是我讀《女兒房》的感應),我也喜歡小說感很重的散文(比如上一本《寫你》裡的〈水木清華〉)。但小說是小說、散文是散文,就像狗子是狗子,貓子是貓子,可能有狗性格的貓或貓樣的狗,但狗就是無法喵喵叫,小說就得有小說的形式。至於真實與虛構,我認為倒不存在小說散文的不同裡,這好像已經不是小說代表虛構、散文代言真實的一代了,許多小說比散文,更加真實,因為有安全網,保護後面的人。所以如果可能假設,下一本是小說,那麼說不定它會前所未有的真實。
▍
亞妮問九雲:
「我曾在很多地方遇見妳,雖然那些地方大多是書頁與鏡頭,甚至是他人的視角與記憶。在這些地方裡,我不可忽視地讀見與看見妳的各種『離開』,不管在哪,想知道妳怎麼看待離開,離開要如何瀟灑,或是說,離開真的可以瀟灑嗎?」
第一次有人這樣跟我說,好特別的問題。我想了很久,這會不會跟我的名字有關呢?有一個算命的說,我生在早春,太多水氣,九朵雲飄來飄去無法落腳。而且缺了「一」,一直在尋找。話鋒一轉,又說我有幫夫命,是一匹快駒,誰遇到我就飛黃騰達。我就只算過那一次命,聽好玩的。我很討厭道別,別說機場月台,連電話我都不想先被掛,也不想掛人電話,所以乾脆不講電話了。但如果真的要離開,我的瀟灑大概就是徹底的消失、蒸發。這點聽起來難,但練習幾次就會了。
「『戲再怎麼演,也演不過生活本身』,無比同意這句話。後來才知道,原來不用成妖成魔,只是好好當(演)個人(類),也不簡單。那個大家都在驚呼『啊!三十歲了』的三十歲,原來跨越了不過如此。三十之線過後的這幾年,妳覺得,生活真的會有什麼不同嗎?」
哈哈,這個話題我在詒徽快三十時也跟他聊過。我目前覺得跨越三十歲是人生階段最明顯的「成長痛」。這個世界讓我們普遍晚熟,大部分得要到這個階段才突然驚覺要好好處理自己才行,不然就這樣老下去的話,就真是沒救了。生活的不同就是真的開始學著生和活,幸運的話,就會懂得選擇追求適合自己的,慢慢刪除大家都想要但會讓自己很辛苦的那些(成家立業那些啦)。
「讀妳的書時,看到『二選一遊戲』,曾經也很癡迷一段時間。於是,想和妳玩一題。演戲和寫字,請選擇。其實,不選擇完全可以。真正想知道的是,妳喜歡看誰演戲,喜歡看誰寫作?怎麼看自己的戲與自己的字呢?」
二選一的遊戲,很瘋,玩過頭的時候,會失去朋友。哈。我會選寫字。因為可以自己掌握,相對自由。
我看的東西都很雜,最近開始發現原來自己喜歡的東西,都是覺得自己達不到的。譬如前陣子我很愛看一個英國女演員自編自演的電視劇《Fleabag》,還找了她原始的劇場版獨角戲看了好多遍,嘖嘖稱奇。不過我很有自知自明,那種技術我還達不到,也可能不是那麼適合自己。我愛看四十歲以上的女演員,尤其法國那些:茱麗葉畢諾許、夏綠蒂甘絲柏。我小時候就覺得她們好美,怎麼過了那麼久還是美,真不科學。也很愛一個德國女演員,之前演《顛覆人生》《賣場華爾滋》桑德拉惠勒,最近看到她演劇場版的哈姆雷特,酷。我喜歡看見演員有自己的樣子,而且感覺總是自在。
作者我還是會說蕭紅、Alice Munro和Olga(去年諾貝爾獎的波蘭作者)。還有一個Lydia Davis台灣目前都還是沒有她的作品。我喜歡把故事說得很深很殘忍的優秀小說家,也喜歡用奇怪方式寫作的,譬如Olga和 Davis。通常散文式的短篇小說最讓我喜愛。
「我作為一個女生,看一個女生,誠實自白,好像是渡過了某個階段後,才能真正欣賞起女子的好看,不管是哪一方面的好看,終於能擁有純然祝福美好她者的能力。但成長的過程中,總想知道,其他女生,怎麼看待女生?那些美好、那些比較、那些緊密與張力。」
女生和女生就是不能用看的,要用摸的。哈哈。像聊天就是一種彼此心臟按摩的過程。我在工作中常常會遇到很多好漂亮的人(無論男女),其實一開始的時候都會自動遠離他們。不是他們把我推開,也不是我刻意保持距離,但就是會不敢/也不想過去。但我慢慢搞懂那是一種「彼此的自覺」讓我感受到的壓力。無論是彼此對自己的評價,以及習慣性對他者的評價,都在空氣中產生一種張力。後來我發現,必須要先拿到自己這邊的「自覺」,才有可能破除那個張力。但現在發現也不用太免強,有時候就是剛開始不熟,吃吃喝喝幾次後大家都會原形畢露了。
「似乎,九雲也是養狗的。對妳來說,與寵物的關係是什麼呢?(其實不喜歡寵物這說法,寵只是愛的單一形式,那樣的關係應該要更接近廣義愛)」
我的狗就是我。這樣講很搞笑,但真的就是這樣。她跟我越來越像,完全反射出內在平常不能見人的那一塊,膽小、懶惰、愛撒嬌、情緒化、很歡。有時我需要透過她的狀態,來察覺我原來心情有點不爽。我很怕昆蟲,怕髒,於是她比我更怕,如果蜜蜂經過窗戶嗡嗡嗡,她就立刻起身走到房間裡。在路上經過有水的地方,她會小心翼翼繞過。這些都是慢慢變成的,她慢慢成為我了。真可怕。
#我跟你說你不要跟別人說
#女兒房
#蔣亞妮