那以後,數學系教授會失業嗎?
同時也有5部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,今天是萊恩老師的第 4 集 想來聊聊進大學前的事情嗎 或是想知道今天萊恩老師要吃什麼 10:30 一起來坐坐...
「數學系學什麼」的推薦目錄:
- 關於數學系學什麼 在 TechOrange 科技報橘 Facebook 的精選貼文
- 關於數學系學什麼 在 親子天下 Facebook 的最讚貼文
- 關於數學系學什麼 在 高虹安 Facebook 的最佳解答
- 關於數學系學什麼 在 數學老師張旭 Youtube 的最佳貼文
- 關於數學系學什麼 在 林榆芩牙醫師 Youtube 的最佳貼文
- 關於數學系學什麼 在 數學老師張旭 Youtube 的最佳貼文
- 關於數學系學什麼 在 [心得] 有關數學以及數學系的一些心得- 看板SENIORHIGH 的評價
- 關於數學系學什麼 在 數學系出路 - 閒聊板 | Dcard 的評價
- 關於數學系學什麼 在 By 台大數學系學會| 【2022杜鵑花節 - Facebook 的評價
- 關於數學系學什麼 在 optimization數學2022-精選在Youtube/網路影片/Dcard上的 ... 的評價
- 關於數學系學什麼 在 optimization數學2022-精選在Youtube/網路影片/Dcard上的 ... 的評價
- 關於數學系學什麼 在 知名英文教學YouTuber竟是樂團女主唱! 聯手林哲儀主持新節目 的評價
數學系學什麼 在 親子天下 Facebook 的最讚貼文
【訓練孩子思考性向及興趣】
小孩不會永遠都是小孩,必須從小思考自己的興趣。我從兒子邰靖兩歲時就問他「你的第一志願是什麼」,剛開始他不太懂;三歲時他說要當科學家,因為可以了解很多事情;直到八歲,他還是把「科學家」當成一輩子要做的事。
邰靖知道當科學家不簡單,要讀數學、物理⋯⋯。我給他的觀念是,讀書是為for fun,答案不是重點,而是找答案的過程很快樂⋯⋯⬇️⬇️
數學系學什麼 在 高虹安 Facebook 的最佳解答
七月的第一天,虹安在線上參加了第十屆工程、技術與STEM教育研討會,今年主辦單位是宜蘭大學資訊工程學系、協辦單位是成功大學工程科學系、IEEE台北分會 Young Professionals Group,研討會主題為「結合跨領域的工程教育」。虹安從資訊學碩士再到機械博士,現今又在立法院服務,橫跨了三個領域,當天的演講主題是「數據科學與國家治理」,由於疫情的關係,只能在線上跟各位老朋友、學界伙伴相見。
💡 科普時間:什麼是STEM教育?
✒ STEM,是四個英文字的第一個字母結合而成--科學(Science)、科技(Technology)、工程(Engineering)、數學(Mathematics)--是近年相關產業最喜歡用的關鍵字,歐美也有許多STEM教育的相關計畫,希望未來教育能從「知識傳遞」進化為「學以致用」,著重於科學、科技、工程、與數學的跨領域資訊整合,使知識成為可用資源的思維。
虹安首先以自身的學習、工作經歷作為開場,就讀資訊工程系所時的虹安,也跟你我的學生時期一樣,熬夜寫程式debug、拼命K書📚、做研究;到了機械博班的階段,要在博士班的過程一口氣弄懂機械系學生四年學到的內容,結合自身的資工背景,激發出insight 💡變成博士論文。過程中也曾經怨嘆過為什麼想不開,為什麼要跨領域讓自己這麼累;再到了科智的創業時期,獲得了 #全球創業賽第一名 的殊榮,跨領域的學習逐漸展現出成果;接著又到了鴻海集團擔任工業大數據辦公室主任貢獻所學,同時也擔任郭台銘創辦人的特助,命運的際遇讓我來到了立法院擔任第十屆立法委員。這次跨離了工程領域,虹安仍然戰戰兢兢,但過往累積的經驗與能量,使我能把立委的角色擔任好,虹安的大數據專長讓我問政時更能以事實和邏輯分析為根據,以數據避免政治口水,也為立院帶來了不同的科技思維。
#而且立院的同事跟科技業的很不一樣
接著,虹安以「數據思維的重要性」作為切入,說明了零售業龍頭Amazon建立了「線下」實體通路的用意是什麼、又如何決定什麼商品該在架上展示,現今的一切,不再用經驗法則決定,而是 #大數據驅動的結果,「妥善用數據分析就能看到別人看不到的價值」。在2011年,發源於辛辛那提的奇異(GE)公司,發表了GE Industrial Internet System,舉例說明了 Product (or Service) Data Life Cycle,強調了數據收集、數據比對與分析、決策改善等三個要素的Life cycle,這Life cycle適用於各領域的大數據分析和應用,重點是,以數據驅動需求的首要原則是:From gut feeling To data agility,將主觀意識下有限的數據來源,轉變到客觀心態下更大更完整的#開放式數據來源,如此一來,養成數據化的工作模式,就能得到洞察數據敏感力,看到別人看不到的價值。
而在 #國家治理方面,虹安舉了去年質詢陳時中部長的 #口罩地圖 為例,說明了大數據分析用於口罩分配的成果😷,並可解決城鄉口罩用量不同的物流輸送問題,使每個需要的人都可以買到口罩。各縣市的口罩分配不應該只是齊頭式平等;而我用的方式,就是上述的「數據收集、數據比對與分析、決策改善」三要素;虹安才能以明確的數據質詢蘇院長,7600萬片口罩到底去了哪裡。除此之外,虹安在立院密切關注的,還有 #數位發展部 的成立。數位發展部源自國家對於數位科技產業及發展的重視,成立數位發展部以進行國家數位發展政策之規劃、協調、推動與法規擬定及執行,並著重國家資通安全政策、法規、重大計畫與資源分配之擬定、指導及監督,這會是虹安在立院第四個會期的重要工作項目。
值得一提的是,會後教授們的提問十分精闢,虹安大致整理如下:
①女性工程師的教育環境、社會支持的情況
②科研成果的產出,凝聚成政策推動的的能量,再從政策回到高等教育的增進,形成正向循環的方式
③數位發展部的角色對於高等教育的影響,是否與科技部/國科會有所不同
很謝謝學界朋友的交流,這次的演講讓我暫離政治圈回到本業,虹安將會從這些面向進行研議與推動,希望我的分享也能給予學界跨領域的交流與互動。
#回歸自己的本業既熟悉又開心
#跨領域最難的是要花很多時間讀書
#想了解虹安的歷程可看面試郭台銘
數學系學什麼 在 林榆芩牙醫師 Youtube 的最佳貼文
我為何唸牙醫系?會期望小孩讀醫嗎?孩子將來最好的職業是現在父母這個世代還沒有的職業 |林榆芩醫師
聽說現在高中生的第一志願是當YT,身為一個兼職YT的39歲牙醫,我覺得年輕人真得是有夢最美啊!當牙醫比當YT輕鬆太多了,但比較無聊,因為工作時的視野永遠就只有口腔,當YT的視野多廣,可以放眼全世界。但成功的YT有幾個?不成功的連養活自己都有問題,但沒有一個牙醫是養不活自己的。即使如此,我也不會期望我的小孩一定要當醫師或牙醫,這支影片會聊到為什麼當初我選擇讀牙醫系。也會舉兩位在醫師世家中卻不讀醫的名人案例:FB執行長馬克佐克伯以及YT上最紅的數學老師,看他們是如何變得比自己父母或兄弟姊妹更成功!
學測成績放榜一陣子了
高三生開始忙選填科系、面試
為生涯的下一階段做出選擇
然而多數高中生在畢業之際
仍會對未來感到迷茫、找不到方向
這其實是很正常的
今天要來和大家分享
我為什麼在求學時選擇牙醫系
以及鼓勵年輕人們把夢做大
💡影片重點
00:00 搶先看
00:23 為什麼我選擇讀牙醫系
01:05 18歲仍對未來感到迷茫是正常的
02:24 哥哥成為我考上牙醫系的動力
03:58 成為牙醫並不像想象中這麼難
04:15 父母的支持是我成為牙醫的動力
05:05 我的另一支影片介紹
06:00 鼓勵年輕人把夢做大
07:00 最紅高中數學老師——Eddie Woo
音樂: Achaidh Cheide
音樂家: Kevin MacLeod
網址: https://filmmusic.io/song/3338-achaid...
許可: https://filmmusic.io/standard-license
✏️相關文章
醜小鴨變天鵝——暴牙矯正
https://follow-heart.com/tee_correct
艾瑪史東與愛馬華森的牙齒矯正案例
https://follow-heart.com/emma_corr
靠牙齒矯正晉升好萊塢顏值最高夫妻
https://follow-heart.com/holly_tee
✉️歡迎追蹤
臉書粉專|https://follow-heart.com/dentist_fb
IG追起來|https://follow-heart.com/dentist_ig
#牙醫師 #牙醫科系 #志願選填 #牙科 #醫學系

數學系學什麼 在 數學老師張旭 Youtube 的最佳貼文
【摘要】
本影片介紹從介紹幾個重要的 PDE 開始,說明了 PDE 應有的型式為何,然後介紹了三個必備的運算符號 (▽、div、△) 以及二個必備的計算公式 (分部積分、格林第一公式),最後說明了為什麼會有 Laplace equation 這個 PDE
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
無
【講義】
本系列影片配合台灣清華大學王信華教授的 PDE 上課用筆記
如果想知道這部影片是對應到哪一個章節,可以參考封面灰色字樣
這個筆記市面上沒有在販售
如果需要的話,可以直接寄信給王教授跟他詢問
或是到清華大學對面的影印店詢問,因為有配合影印販售
【附註】
本影片專門為數學系的學生拍攝
【張旭的話】
你好,我是張旭老師
這是我為數學系學生拍攝的 PDE 教學影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學 PDE 的同學們,謝謝
【學習地圖】
整理中
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【聯絡方式】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
E-mail:[email protected]
【張旭老師其他頻道或社群平台】
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【特別感謝】
特別感謝丈哥 (王重臻) 協助我討論課程內容和錄影
還有昆霖熱心幫助我剪輯影片和上傳整理
沒有他們的幫忙
這個頻道是無法由我獨自一人建立起來的
另外,丈哥是我主要的合作夥伴
他的大學數學也很厲害
如果對我們產出的內容有任何問題或建議
也都可以直接與他聯繫
【丈哥資訊】
FB:https://www.facebook.com/HeLoFriend.JangGe
IG:https://www.instagram.com/iamjangge
YT:https://www.youtube.com/channel/UCmzhDwcxCj8Bf7XSFA0ynCQ
E-mail:fpn12099xd@gmail.com
【贊助我們】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內請用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#拉普拉斯算子 #拉普拉斯方程式來源 #格林第一公式

數學系學什麼 在 數學系出路 - 閒聊板 | Dcard 的推薦與評價
當初讀數學系是因為對數學蠻有興趣,剛剛好學測一考就考上了,再加上父母很自由,所以就去了。 而讀了半年多,其實我也真的不排斥數學,上學期系上 ... ... <看更多>
數學系學什麼 在 By 台大數學系學會| 【2022杜鵑花節 - Facebook 的推薦與評價
2022杜鵑花節:學系介紹影片】 大家好,今年杜鵑花節改以線上展覽的方式進行,此影片為前兩年介紹影片的更新版本,除了簡介 數學系 課程、資源、活動之 ... ... <看更多>
數學系學什麼 在 [心得] 有關數學以及數學系的一些心得- 看板SENIORHIGH 的推薦與評價
大家好~
個人上大學、學大學(數學系)數學也有一陣子了,因此決定上來發個心得
(對發文規矩不太清楚所以請鞭小力一點> <)
(文極長但是真心想跟大家分享的)
以下基本上會偏向主觀的個人心得,當然也歡迎大家留言討論或是問問題
簡短的自我介紹&背景
我是台中人,是個弱弱的大一菜雞
畢業於哪所高中似乎沒那麼重要因此給個小提示就好(男女比約1:2、原本是國立的高中)
然後在去年的個人申請正取了臺大數學系(心目中的第一志願)
有關於大家常提的一些有關數學的說法,我自己的看法
(歡迎大家補充更多)
Q1. 數學好難,不管怎麼念,考試的時候就是不會寫啊
A1. 關於這點,前四個字我是非常認同的 (數學好難)
其他部份我跟Q2.一起回答
Q2. 是不是只有有數學天分的人適合念數學(學得會數學)?
(以下故事都是真的,我也不喜歡唬爛)
A2. 我不否認的確某些人在數學的學習上看起來很輕而易舉,
上課聽一聽,作業就可以寫得出來考試也幾乎都考蠻高的
我想說說我自己的親身經驗應該會比講一些老生常談好得多
(以下很多跟數學無關,但我覺得是符合我想要表達的概念)
在我的數學學習過程中,直到上大學前的確阻礙並不大
(但還是有,我還記得國中自己往後翻一元一次方程式的時候
很不能接受什麼等量公理、移項法則之類的東西,以及高中
老師提前在高一教三角函數時上課幾乎聽不懂)
儘管如此,有些在高中發生的事我覺得蠻值得提的
我是數資班的,但是入班考是從後面數回來的XD
在高一的時候我在班上的數學程度大約是在前中段而已,並沒有到非常突出
結論是我在高二的時候數學程度進步到約班上前3
(高二寒假時寫106學測對答案就14級分了,當然是在沒有壓力的情況下寫,
我也不是要炫耀,只是希望等等在說完我怎麼進步的
以及我跟其他同學對數學的看法差異時能有個比較參考點)
(細節和歷程有點多就先不提,想知道的人可以留言問我,我就會回答)
我的數理在班上算是還不錯的(單就成績來看的話),英文又是前段
因此段考名次也還可以在前1/3附近,儘管我的國文和歷史、地理非常的爛
在當時我非常討厭這種所謂的「背科」(沒有要戰的意思,當然我現在知道
所謂文史也是需要理解、也有它困難的地方,只是就像也有人討厭數學一樣吧)
所以除了上課,回家基本上完全不會理,段考前才會惡補一下看會不會及格
為什麼要提這段其實是跟後面的故事有關,我就接著說下去
當然身為高中生,要考上好大學還是得把社會科讀起來拉總級分
我一開始其實是不太願意面對的,所以我在暑假開始複習學測內容時是這樣做的:
把買來的數學複習講義+題本2本全部掃光,然後按照科目喜好從最喜歡到最討厭
的一本一本啃完(除了英文以外),理所當然地理和歷史就留到最後了
國文甚至幾乎是裸考(只有寫考古和模考,買來的複習講義新得跟什麼一樣)
(題外話:這只是我自己的複習方式,我自己都覺得很奇怪,不是太建議這樣學習)
就像前面說的我超級討厭歷史和地理,高一高二又是混過去的,所以唸得非常痛苦
因為沒有基礎所以只能畫重點、背、寫題目、滿江紅,然後無限循環
我那時候也會不時覺得自己怎麼進步這麼慢,都唸兩、三個月了寫模考題還是滿江紅
(這邊提醒一下,因為我的複習方式所以那時的其他科目除了寫題目維持手感以外
沒有特別唸很多)
曾經一度因為這樣很苦惱,但後來還是熬到學測前,寫考古時發現
自己有辦法寫到13級分了!!!
(當然這樣沒有很厲害,13級分應該可以錯個15題左右吧XD
只是對一個曾經面臨被當危險的人的確實會非常開心)
故事先說到這邊,稍微提一下我社會科的進步幅度就好:
中模1st:10級分->中模2nd:13級分->107學測:14級分
說上面這長串故事,我並不是想炫耀我有多努力或多聰明,我承認我是個幸運的人
學測只有社會和國文需要搶救,國文又因為出題模式改變剛好選擇考得不錯
而撈到13級分
(說到這點我一定要抱怨,學測國文鑑別度真的很糟糕,我這種裸考的人
考13級分,一個要拚醫科很努力的同學卻因為作文掉到12級分(他的作文是連
國文老師都認可的)我不想引戰,但這種事情就是活生生的發生在我眼前)
我主要是想用自己在社會科的經驗回答第一和第二個問題:
如果你看完故事,再回去看一下題目你會發現
(1)原PO當時社會極爛,也覺得很難
(2)從原PO在高一二的表現和進步速度來看他的「社會天分」應該也不太好(?
或許真的有天分這種東西,但我真心認為對絕大部分的人而言,
絕對有辦法把數學學到某種程度
(這裡的「某種程度」涵蓋到目前高中的所有課綱內的數學
甚至到部分的大學數學,像是微積分)
看到這裡我相信有些人可能會覺得:啊搞不好你就真的比較聰明啊,才有辦法在
這邊說這些風涼話 or 你有體會過上課聽不懂、作業不會寫要怎麼辦的感覺嗎
關於第一個質疑,我的回答是我不確定,但我確定比我聰明(甚至聰明很多)的人很多
可以看看上面提到的我的背景,或是我再告訴你:我去參加競賽也是各種被慘電
最好的成果只有中區學科能力競賽佳作,關於這點我待會會提到
聰明的重要性和我的看法
而關於第二個質疑,我可以毫不猶豫地回答有,現在就常常發生
教授在台上上課,我聽不懂只能埋頭抄筆記,作業寫不出來更是稀鬆平常
回到主題,為什麼我會認為大部分的人都有辦法學會數學
其實最近在網路上看到一本書的書評,看完之後覺得很認同,所以也因此決定要發文
(我不確定可不可以公然提到書名,如果可以的話我願意留言補充)
請大家回想一下自己的學習歷程,是不是在某個點卡住之後就沒有好過了
(除了數學,其他的科目也是,只是我不太確定為什麼有很多人對數學這科
特別會有需要天分的說法)
每個人的所謂的那個「點」其實不太一樣,以我個人的話現在在大學學習時
就常常發生,但我覺得重要的有幾點
(1)你是為什麼學數學
(2)你願意為了數學(或其他東西)付出多少
再回到我高中的部分一下,那時儘管我不是班上頂尖,但我相信喜歡數學的程度
在班上是沒幾個人比我高的,又因為不喜歡社會科、不是太在意考試或繁星,
所以我常做的事就是想/寫數學,找數學有關的任何東西,不用「平均」的唸
所以在某些同學為了學測、繁星捨棄精進數學的機會時,我花一整個晚上
自己訂正老師出的小考(那時老師總會放幾題難的),或是花好幾天把看到的一些
競賽題或是中山大學的雙週一題之類的東西試著想出來
我不覺得是我比他們聰明很多,我一開始小考會時不時的爆炸
從入學考倒數這點應該也能看出來我不能算很資優,
只是我可以花很多時間自己試著理解、思考,
所以才進步到上面說的那種程度(當然還是沒有很厲害啦)
整篇文章講了那麼多
我想說的不是「只要努力,人人都可以當數學家」這種話
而是「如果你只因為一時挫折而覺得自己不夠聰明,進而放棄學習,
那你怎麼指望有一天就自己突然學會了」
我身邊也很多比我更聰明的人,但我更佩服他們對數學的態度和熱愛,
就算他們真的比較聰明,我也覺得那是他們的努力應得的
我也被擊倒過,我也有完全聽不懂、看不懂的時候,
但為什麼我最後社會考了14級分,考進臺大數學系
(By the way 申請是有數學筆試和口試的)
我相信、也感謝是當時那個沒有放棄的自己
文章終於結束了,很感謝願意花時間看完的人,
文中或許有不少偏頗的地方,但歡迎大家指教
希望大家在之後數學寫不出來的時候能先告訴自己:我可以,只是要再多一點時間而已
(當然也泛指各種困難,不只是數學,真的努力過了再放棄也不遲對吧)
然後沒有提到具體怎樣學數學以及有關數學系的心得是因為覺得適用範圍太小,
如果對這方面想聽聽我的看法的話我可以在下面和大家討論
最後附上一則系上某位教授的語錄:如果你有討厭的事,那就每天作15分鐘
既然很多人提到想要知道書名,那我就附上來好了:
幫孩子找到自信的成長型數學思維 (不過我也只有看書評就是了XD)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.240.53
※ 文章網址: https://www.ptt.cc/bbs/SENIORHIGH/M.1558685777.A.5D9.html
※ 編輯: momo04282000 (140.112.240.53), 05/24/2019 16:20:05
我在高一下的時候考校內學科能力競賽只有佳作
之所以說只有是因為兩個原因
(1) 那份題目其實對超修的人占優不大,也就是高一夠強也可以優勝
(2) 班上有另一位同學拿優勝(後來中區也拿佳作)而當時我認為我數學應該比他好
(因為他是我上面說的那種很平均唸的人,對數學也是經常不懂就問
這邊指的是一時解不出來就問老師解法,不是有困難而問)
這樣評論有點主觀,不過這是「當時的我」的想法就是了
因為這個原因所以其實不太甘心,在之後升高二之後我還是用上述的方式學習
就不只學課內,自己看到什麼有趣的題目都會去試著解,
基本上那時候課本上的推論、證明我都能大致掌握
(除了某些高中證不太出來的像是代數基本定理之類的)
而因為高二了,某些人放在數學的比重明顯更下降(就是不要考太差就好)
把重點放在平均地考好&拚繁星、學測
這樣下來約一年的結果,我在高二下再度挑戰校內學科能力競賽的時候
拿到第一名的優勝(考最高是數學老師告訴我的),所以才有後面中區的故事
那位同學好像跑去考生物還化學然後沒有進中區複賽
我沒有要說哪種做法比較好,留給大家自行評估
畢竟台灣重視升學考試所以他那樣也算是無可厚非
我自己只是剛好運氣比較好,班上其實還有一位我覺得更厲害的
他可以把功課顧到繁星1% (雖然據他說法是因為班導,他也唸得頗痛苦,不是很喜歡)
還自己唸高中物理甚至到大學物理(好像高二就自己把高中物理唸完了)
高一下就拿中區能力競賽第六名然後全國能力競賽也有得獎
我想主要還是你可以砸多少時間在數學上,因為像我也不是馬上付出馬上回報
是一段時間後突然覺得自己功力上升一個等級,那種感覺有點難形容
有點像我說的線代突然懂的例子,而且那段時間長度因人而異
努力了還是不懂的感覺也不是太好,像我現在就是花的時間不太夠
所以學得有點糟糕,只能說學數學真的不像某些科目是比較線性成長的吧
(像高中的社會或國文,你多背一點考試就會高一點)
我自己高中就是某個時候突然能夠把課綱內的東西都理解透徹
只是現在的話好像就還沒「開竅」XD
有點像l6l6au大大說的時間砸下去 基本上被設計出來的「課程」
不會過不了(甚至可以學得很好) 只是具體時間要多少不好說
但系上的微積分蠻「分析」的 (相比其他學校的話)
可以參考我在臺大課程版發的心得文,我們用的那本教科書和一般的微積分差別頗大
我和ScottOAO大大的看法比較不一樣,我認為要看是怎樣的線代和怎樣的微積分來比
如果是偏代數的抽象線代VS一般理工科微積分我會覺得應該微積分簡單一點
不過每個人的狀況又都不一樣就是了,我自己現在下學期學微積分學得很糟糕
回到你問的問題,我自己的經驗是線代比較抽象
(因為函數是相對熟悉的東西,高中又幾乎沒有接觸比較抽象的代數)
不過這兩個科目的確都蠻抽象的,我同意ScottOAO大大說的一個看法
把問題放在腦中有空就想,的確這兩個科目有時候會一時無法理解這些理論、定理的由來
(像我現在還是覺得Jordan form 證明的方式-Cyclic subspace分解 非常的通靈
還有最近的Stoke's Theorem 和 Quadratic Space的一些定理
(E.g. Wiit Decomposition/Cancellation Thm Cartan Dieudonne Thm))
根據我微積分老師和自己後來實證的經驗,證明或意義看不懂先跳
先作習題比較能幫助理解 (一般來說作出習題並不一定要對定理的證明整個理解透徹)
之後可以再慢慢思考,不然老師課其實還是一直上下去不會等你
像我說的Jordan form我不會,但老師期末考得比較應用(就是利用Jordan form 證明)
所以我還是考得不錯
總結來說我是認為主要要先砸時間,有時候大概對定理本身有個直觀的感覺就暫時OK了
因為我自己有時候也是會迷失在證明的細節裡,像是線代第一章(Friedberg的書)
我一開始根本不懂定理在做什麼,是後來才突然理解整個東西在做什麼
甚至也可以把整個看成一套東西而不是東一個西一個定理
為什麼的話有時候其實我也說不太上來,主要還是砸時間等自己有一天開竅(?
很抱歉感覺沒回答到的感覺,但我想主要是真的要花時間&卡住時可以適時跳掉
再補充一點就是可以和同學老師多討論,畢竟是學數學
並不是要把數學「重新創造一次」所以我是覺得有時候的確免不了要背
或是強迫自己接受一些奇怪的定義和構造(?
如果一直自己唸有時候會有盲點or鑽牛角尖
多聽聽其他人的想法或許可以得到一些啟發
※ 編輯: momo04282000 (140.112.73.2), 06/01/2019 16:33:02
※ 編輯: momo04282000 (140.112.73.2), 06/01/2019 17:02:10
※ 編輯: momo04282000 (140.112.73.2), 06/01/2019 17:03:21
※ 編輯: momo04282000 (140.112.73.2), 06/01/2019 17:05:49
... <看更多>