《麻省理工科技評論 MIT Tech》8/1
* 【改善空氣污染能降低患阿茲海默症風險】
根據 7/26 日在美國丹佛舉行的 2021 年阿茲海默病協會國際會議上發佈的多項研究報告,改善空氣污染會改善認知功能,降低阿茲海默症風險。此前報告曾顯示,長期暴露於空氣污染與阿爾茨海默病相關腦斑有關。而此次會議是第一次累計證據表明,減少污染,特別是空氣中的細顆粒物和燃料燃燒產生的污染物,與降低全因失智症和阿茲海默症風險有關。
* 【MIT科學家研究了如何減少一次性口罩對環境的影響】
據估計,COVID-19大流行期間每天產生多達7200噸的醫療廢物,其中大部分是一次性口罩。近日,麻省理工學院(MIT)的一項新研究指出,通過採用可重復使用的口罩可以大大減少這一損失,該研究計算了幾種不同的口罩使用方案的財務和環境成本。研究人員表示,完全可重復使用的硅膠N95口罩能更大程度地減少浪費,而他們現在正致力於開發這種新型口罩。目前,這項研究已經刊登在《British Medical Journal》上。
* 【新發明的的尿液或血液測試方法可以發現腦腫瘤】
劍橋大學的醫學研究人員開發了兩種新的測試方法,能夠檢測最惡的腦癌膠質瘤。使用新開發的測試可以在病人的尿液或血漿中檢測到腫瘤,這也是世界上第一個此類測試方式。
* 【歐洲科學家開發出可低成本製造發光材料的新技術】
劍橋大學和慕尼黑工業大學領導的研究人員發現,通過將一種材料的每 1000 個原子中的一個換成另一個,他們能夠將一種被稱為鹵化物鈣鈦礦的新材料類發光體的發光能力提高兩倍。該發現有益於製造更有效的低成本發光材料,這些材料具有柔性,並可使用噴墨技術列印。相關研究發表於《美國化學會志》。
* 【哈佛科學家發起伽利略項目,致力尋找宇宙中的外星科技文明】
哈佛帶領的一支科學家團隊,已經發起了一個旨在宇宙中尋找外星生命證據的伽利略項目(Galileo Project)。結合地面望遠鏡、人工智能等方案,這項研究將著重於外星智能的物理例證,而不是源自遙遠文明的電磁信號。
* 【科學家發現潛在療法能提高人類免疫系統在體內搜索和消滅癌細胞的能力】
近日,南安普敦大學和米蘭國家分子遺傳學研究所的研究人員發現了一種潛在的治療方法,可以提高人類免疫系統在體內搜索和消滅癌細胞的能力。研究人員表示,他們已經確定了一種限制調節免疫系統的一組細胞的活動的方法,這反過來可以釋放其他免疫細胞來攻擊癌症患者的腫瘤。目前,這項研究已經發表於《PNAS》。
* 【美國研究團隊在太陽能制氫方面獲得新突破】
數十年來,世界各地的研究人員一直在尋找利用太陽能來制氫的關鍵反應方法,即如何將水分子分解成氫氣和氧氣。儘管大多數努力以失敗而告終,且少數成果也面臨著成本過高的尷尬。德克薩斯大學奧斯汀分校的一支研究團隊,還是設法找到了一種通過厚二氧化硅層來創建導電路徑的方法來有效從水中分離氧分子。該方案能夠低成本地運用,並擴展到大批量生產流程中。有關這項研究的詳情,已經發表在近日出版的《Nature Communications》期刊上。
* 【現近 20% 的原始森林景觀與採礦、石油和天然氣等採掘業特許地相重疊】
國際野生生物保護學會(WCS)和世界自然基金會(WWF)的一項新研究顯示,近 20% 的熱帶原始森林景觀(IFLs)與採礦、石油和天然氣等採掘業的特許地相重疊。重疊的總面積約為97.5萬平方公里,大約相當於埃及的面積。採掘業特許地與熱帶國際森林公園重疊最多,佔總面積的 11.33%,而石油和天然氣特許地的重疊面積佔總面積的 7.85%。該研究發表在《森林與全球變化》上。
* 【MIT研究人員用紅外攝像機和人工智能來預測「沸騰危機」】
最近,麻省理工學院(MIT)核科學與工程系的研究人員,通過訓練一個神經網絡模型來預測「沸騰危機」。研究人員表示,該模型能夠從具有不同形態和潤濕性(或吸濕性)的表面上的氣泡動力學的高分辨率紅外測量中預測沸騰危機的餘量(即偏離核沸騰比,DNBR)。這項研究成果或將應用於冷卻計算機芯片和核反應堆。目前,該研究已經發表於《Applied Physics Letters》。
* 【英國研究人員使用一種創新方法來「逆轉」與年齡有關的記憶衰退】
英國研究人員的一項新研究提出了一種創新的方法來治療與年齡有關的記憶衰退。臨床前研究顯示,通過「操縱」大腦中被稱為神經元周圍基質網絡(PNNs)的結構組成,可以逆轉衰老小鼠的記憶衰退。
* 【中國科學家利用簡單的 RNA 微調讓馬鈴薯和水稻產量提高 50%】
北京大學的研究小組將一種叫做 FTO 的單一基因插入到馬鈴薯和水稻植株中。由此產生的植物是更有效的光合作用者,這意味著它們長得更大,產量也更高 —— 在實驗室中產量提高了 3 倍,在田間產量提高了 50%。它們還能長出更長的根系,這有助於它們更好地忍受乾旱。
* 【歐盟提出一攬子應對氣候變化方案】
歐盟委員會近日提出應對氣候變化的一攬子計劃提案,旨在實現到 2030 年歐盟溫室氣體淨排放量與 1990 年的水平相比至少減少 55%,進而到 2050 年實現碳中和的目標。這份提案涉及交通、能源、建築、農業和稅收政策等諸多領域,具體內容包括收緊現有碳排放交易體系,增加可再生能源的使用,提高能源效率,盡快推出低碳運輸方式及相關配套基礎設施和燃料,制定與脫碳目標相一致的稅收政策等。
* 時間晶體即將誕生?當地時間 7 月 28 日,谷歌在一篇預印本論文中表示,其首次使用 「懸鈴木」 (Sycamore)量子計算機創造出了 「真正的時間晶體」。
參與該研究的科學家超過 80 人,分別來自Stanford 大學、普林斯頓大學、MIT 和德國德累斯頓馬普固體化學物理學研究所(德累斯頓)等科研院所,論文標題為《在量子處理器上觀測時間晶體的本徵態序》(Observation of Time-Crystalline Eigenstate Order on a Quantum Processor )。
* 【新分子圖譜揭示腦細胞發育軌跡】
瑞士洛桑聯邦理工學院(EPFL)和瑞典卡羅林斯卡學院的研究人員首次繪制了胚胎大腦細胞在成熟過程中遵循的遺傳和發育軌跡。這份分子圖譜不僅可幫助人們識別與神經發育狀況有關的基因,確定腦癌中惡性細胞的來源,還可以作為評估實驗室中乾細胞產生的腦組織的參考,同時能改進神經退行性疾病的細胞替代療法。相關研究發表在近日的《自然》雜誌上。
* 【液體填充光纖設計可實現更可靠的數據傳輸】
瑞士 Empa 研究所的研究人員開發了一種光纖,該光纖由連續的液體甘油芯和透明含氟聚合物護套組成。這種光纖以光脈衝的形式傳輸數據的能力跟固體塑料光纖差不多,另外它還擁有更高的抗拉強度。
同時也有1部Youtube影片,追蹤數超過4萬的網紅Dd tai,也在其Youtube影片中提到,分子食物Molecular gastronomy又稱為分子美食、分子料理,被人們稱為未來食物、人造美食,所謂的分子食物是指把葡萄糖、維生素C、檸檬酸、麥芽糖醇等等可食用的化學物質進行組合或改變食材分子結構,再重新組合。也就是從分子的角度製造出無限多的食物,不再受地理、氣候、產量等因素的局限。一些科學...
晶體固體 在 媽媽監督核電廠聯盟 Facebook 的最佳解答
台灣能源轉型進行式ing..... 【綠能科技聯合研發計畫】再生能源點亮創能、儲能應用大未來(05/18/2021 天下雜誌)
文: 台灣經濟研究院
創能技術開發著重提升綠色能源能量與降低成本
創能領域前瞻綠能技術開發配合發揮臺灣太陽光電與離岸風力等再生能源特色,透過提升電池模組效率趨動太陽光電成本下降,以及利用智慧平台系統助於離岸風場海事工程量測與運維,降低風場運維成本,以提升產業競爭力。
開發高效率、低成本、超輕量之太陽能電池技術
提升太陽能電池效率已刻不容緩,成功大學陳引幹教授團隊運用原子層沉積技術,沉積不同氧化物材料膜層於堆疊型太陽能電池中,以優化各膜層厚度、品質與材料純度等,進一步提升太陽能電池品質。中央大學許晉瑋教授與劉正毓教授團隊以軟性三五族太陽能電池收集室外光源,提供智慧模組(溫度感測器與藍芽)足夠電能回送電子訊號,朝向智慧模組「自我維持」前進。
在降低成本方面,大葉大學黃俊杰教授團隊利用非真空設備取代電漿輔助化學氣相沉積(PECVD)、用原子層沉積設備(ALD)以及銅漿料取代銀漿料達成低成本射極鈍化及背電極(PERC)太陽能電池開發。成功大學張桂豪副研究員與李文熙教授團隊創新製程置換太陽能鋁電極,以低成本空氣燒結銅電極應用於高效率雙面太陽能電池,將有效降低太陽能電池成本支出,增加產業獲利能力。
隨著太陽光電產能市場逐漸飽和,相關企業轉型尋求高效率與超輕量太陽能模組,以無人機應用為例,臺灣大學藍崇文教授團隊替無人機縫製出可以吸收太陽光轉成電力的衣裝,賦予偵查、通訊等任務。臺灣大學林清富教授團隊開發適合於固定翼無人機之輕量太陽能模組的大面積(30x150 cm2)太陽光模擬器,於宜蘭大學城南校區建置可供太陽能無人機測試起降與飛行場域。
兼具發電及產氫之仿生創能技術
氫能源為一種乾淨、能量密度高、環保零汙染、應用廣泛與取得容易的新能源,仿生電池即是透過模仿植物光合作用,為既能製氫又能發電的多功能太陽能系統。清華大學嚴大任教授團隊開發氫氣光電催化的催化劑由鉑金轉換為更具有普及性且兼具效能的材料,透過電漿子結構來強化二硫化鉬與日光光場交互作用,增加光能轉化為氫能的效率。中央大學王冠文教授團隊則建置高效穩定低成本之雙效產氫產電系統,利用其太陽能轉換再生電力進行光電催化分解水產氫並儲存,達到能源永續發展之概念。
智慧平台系統助於離岸風場海事工程量測與運維
面對臺灣附近海域高溫、高濕、多颱風與地震頻繁的特有地理環境,以及海上嚴苛條件,成功大學林大惠教授團隊開發離岸觀測塔風向定向系統,可降低量測成本、提高觀測準確性與量測效率,有助於離岸風場開發之海事工程量測。臺灣大學蔡進發教授團隊著重開發離岸風場運維大數據智慧平台,提供數據及開發各種量測技術,達到風機早期診治、早期預防功效,以期降低運維成本。
儲能技術開發著重高效能、高安全、具經濟性以支持各種儲能應用
隨著電力系統快速發展,電力儲存設備的布建應隨之增加其靈活度,以確保間歇性再生能源的儲存整合,促進電力供應端和儲存之間高效率的轉換。而儲能領域當中,又以先進二次電池與先進氫能為基礎核心發展項目。
開發高能量與高安全之固態電池技術
為進一步提升儲能電池安全與效率,全固態鋰電池已經成為研發主流。研究方向多針對電池正極、負極、以及電解質創新材料與設計,進一步提升能量密度需求與提高電池系統的總體能量。
正極材料方面,大同大學林正裕教授團隊開發具可量產層狀富鋰錳基正極材料合成技術,同時透過離子摻雜技術穩定其正極材料之晶體結構、改善材料的離子導電度,進而提升其電池穩定性及電容量。
負極材料方面,清華大學杜正恭教授團隊採用太陽能板製成切削的廢料矽,將此進行高值化做成鋰電池的負極材料,並用交聯反應開發矽負極黏結劑,以共沉澱法、自身氧化還原法進行正極材料開發參雜改質,提升鋰離子電池的循環壽命和快速充放電的能力。交通大學陳智教授團隊利用電鍍雙晶銅箔作為矽基負極材料的基板,配合富鎳層狀氧化物正極構成鋰電池,提升鋰電池的整體能量密度,提供各項裝置或載具更好的續航力。
電解質材料方面,明志科技大學楊純誠教授團隊主要開發鋰鑭鋯氧氧化物固態電解質,並將其應用在NCM811陰極材料上,最終組裝成鈕釦型及軟包型電池。成功大學方冠榮教授團隊開發高緻密性鈣鈦礦、橄欖石、石榴子石結構氧化物及硫化物電解質,以及具獨特性金屬、非金屬中介層,有效降低固態電解質/電極介面阻抗。臺灣科技大學王復民教授團隊研發固態電解質具環保水溶性,有低成本與綠色製程之特性,且能有效改善固體接觸的介面問題,可製備成高容量、輕量化與高性能二次電池。臺灣大學鄭如忠教授團隊深入探討高分子固態電解質,藉由合成改質方式可提供具彈性的高分子,進一步利用後調整加入鋰鹽的種類及添加劑,使研發的高分子固態電解質更符合商用規格。
兼具發電及產氫之仿生創能技術
氫能可作為重要儲能技術研發之原因,乃因其最終可實踐潔淨能源,提供眾多行業(如化工、鋼鐵重工及長途運輸等行業)有效脫碳方法,降低碳排放量,改善空氣品質並加強能源安全。且相對其他儲能系統,氫能另一大優勢為其電轉氣儲能系統有儲存量大以及放電時間長的特性。
行政院原子能委員會核能研究所長久以來專注於氫能領域。張鈞量博士團隊開發大氣電漿噴塗製備金屬支撐型固態氧化物燃料電池之可量產技術驗證,可進行大面積(10╳10 cm2)金屬支撐型固態氧化物燃料電池片之生產;余慶聰副研究員團隊利用新型產氫技術結合二氧化碳捕獲技術,使用低成本觸媒生產95%以上的氫氣,省去複雜的純化處理,大幅降低氫氣製造門檻;李瑞益研究員團隊則是著重於開發固態氧化物燃料電池發電系統,可直接將燃料如氫氣、瓦斯或天然氣轉換為電力,並將餘熱回收再利用,具有高能源轉換效率。
燃料電池方面,中央大學李勝偉教授團隊開發中低溫操作的陶瓷電化學儲能電池,所使用的關鍵電解質材料可使操作溫度降到400-700℃區間,且開發關鍵電解質、氫氣電極與空氣電極材料性能與微結構設計,利用靜電紡絲技術製作空氣電極材料奈米纖維,並成功與電解質相互整合,可提升單電池性能14.1%。
儲存氫氣方面,清華大學陳燦耀副教授與曾繁根教授團隊選擇碳材料進行儲氫研究,以零模板水熱碳化法合成出奈米碳球,最後輔以奈米金屬修飾產生之氫溢流效應(Spillover Effect),提升氫氣吸附效能。
製造氫氣方面,臺北科技大學鄭智成教授團隊致力研發低成本、高穩定度、高效率之中溫固態氧化物電解電池電極材料,另外開發新型氨氣裂解觸媒技術,大幅改善現有氨裂解觸媒反應速率過慢之缺點。中興大學楊錫杭教授團隊則開發非貴金屬觸媒應用於水電解觸媒,以降低裝置成本,並且研發陰離子交換膜和膜電極組,使效率能有效提升。臺灣大學謝宗霖教授團隊發展具突破性之太陽能電解水產氫技術,以低成本、易量產、高效率的鈣鈦礦─矽晶疊層太陽能電池進行電解水產氫,並達到具競爭力之太陽能轉氫能效率水準(10-15%)。而臺灣科技大學胡蒨傑教授研發適於氫氣分離的複合薄膜,藉由熱力學與動力學的基礎理論調控薄膜成膜機制,開發高孔隙度且結構穩定的基材膜,結合優異特性的基材膜及選擇層。
綠色能量持續擴散,協助臺灣繼續邁進成為「亞洲綠能發展中心」
科技部「綠能科技聯合研發計畫」藉由學研界前瞻創新研發能量,推動新能源及再生能源之科技創新,進一步擴大產學研界連結之效益,積極延續科研成果落實產業應用,以期為我國綠能產業布建機會,並協助政府達成能源轉型,且透過綠能科技發展躍身國際舞台。
完整內容請見:
https://www.cw.com.tw/article/5114845
♡
晶體固體 在 每日一冷 Facebook 的最讚貼文
你知道嗎?【留尼旺火山、熱點、與恐龍共舞】
#灼熱的地科冷知識 文末連結影片
歷經一天的疲勞,來看爆發中的火山,平靜一下身心靈(物理)吧。有沒有感到熱烘烘的,那是遠紅外線。
啊?火山通常不會形容是平靜的齁。沒錯,尤其是這座。Piton de la Fournaise (法語:熔爐山,直翻英文大約是 furnace peak)是位在法國的海外領土——印度洋西側的留尼旺島(Île de la Réunion),就在馬達加斯加島的正東方海上。是全世界最活躍的火山,沒有之一。
因此,假設例如文Θ的世界周報報導說「法國留尼旺島火山再度噴發」,聰明的各位可以繼續喝茶,溫暖身心,而無需感嘆:「欸欸欸噴火了,地球怎麼了?」地 球 並 沒 有 怎 麼 了,熔爐火山在近三百年以來噴發了約兩百次,這樣平均 1.5 年一次的高活躍度,是一直正常地活躍著的好孩子 XD。
_
從各種角度標準來說,留尼旺都是「南半球的夏威夷」,首先火山的成因和夏威夷一模模一樣樣,都是位在「熱點」上面:地球內部洶湧的熱對流上升到地表,持續的把咱們地殼這薄薄的幾十到百餘公里的「岩石圈」燒熔出一個個洞洞,好像線香遇到透明塑膠袋。
也和夏威夷相似的是,火山中冒出的也都是高流動性的玄武岩岩漿,而形成盾狀火山,噴發形式也幾乎都是夏威夷式(熔岩流)。只有較少見的爆炸噴發,後者是當周遭的地下水足夠豐沛,被岩漿庫加熱膨脹所致——火山活動往往讓地球變成一具蒸汽機(熱機)。
有時候噴發出的熔岩,冷卻所形成的玄武岩石中間還含有肉眼可見的大顆黃綠色礦物,那些是橄欖石 olivine。橄欖石的存在驗明了岩漿的來歷與正身,因為,橄欖石這種礦物只有在深度約 400 公里的上部地函才能穩定存在。
橄欖石之所以能在地表出現,都是因為被對流「咻」的一下帶到了地表,還來不及重組。是這樣,在地表的低壓下,橄欖石熱力學不穩定,如果持續保持高溫就會重組成其他礦物了,但熔岩上升速率太快,迅速冷卻,晶體結構就凍結而保持住了。
這和鑽石其實在地球內部更深的 600~800 公里處到處都是,但很偶爾才會在地表找到是一樣的原理,如果將鑽石加到高溫,在地表的低壓力之下它會重組成熱力學更穩定的石墨結構。但金伯利岩的熔岩上升夠快夠勁才帶著鑽石安全抵達地表,沒變得黑黑。
_
說到對流,值得一提的是,大家常識中地函是什麼狀態,固體還是液體呢?我們都用「對流」形容了恐怕是液體吧,對吧對吧,錯!地球內部就只有外地核是液體。地函是扎扎實實的固體喔。
科學家之所以沒去過地心就知道地心的狀態,這種事是透過觀測地震波在地球內部的行進。長話短說:地震的 S 波是「剪力波」,所謂剪力就是捏臉或是捏啤酒肚,然後扭來扭去的力,顯然是沒辦法扭動液體,故 S 波也無法在液體——例如外地核——中傳導。但由於看起來 S 波通過地函毫無障礙(除了在一些地帶會略減速),就證明了地函是固體
處在地球內部的特高溫度和壓力之下,地函的岩石這固體具有黏彈性(viscoelasticity,黏置性和彈性的和稱,例子是布丁),在非常非常長的時間之下會逐漸做著液體一樣的苟且之事 (?)。關鍵是人類時間和地質時間的尺度差太多,讓我們有點無法直觀理解「固體會對流」這種事。地老與天荒。
順帶的順帶一提,常溫之下的玻璃的流動性是......根本是零,即使過一百億年都不會流動一奈米。只有在加熱到「玻璃轉化溫度以上」才會明顯的顯出黏彈性、流動、並且可以加工塑形的喔。
地函岩石要局部的熔化,形成岩漿,只有在某些特別的狀況下: 1. 減壓熔化 (decompression melting) 例如在張裂性板塊邊緣往兩邊拉的地方熔點降低形成新的枕狀熔岩,新的海床。 2. 混入雜質的助熔劑融化 (flux melting),當海洋性板塊隱沒時輸送大量的水到岩石圈深處,水分子混進高溫的岩石中,降低了岩石的熔點,水也降低了密度,因此這些熔岩才會上浮到地表,捅穿岩石,形成海溝後方常見的火山島弧。
_
回來講主角留尼旺的火山
* 快速查了為什麼這個島取名做「會合島」(reunion)這麼奇的名字,結果是和法國大革命中某次會師有關。更搞笑的是隨著隨後的政治起伏,該島又曾經被改名為「波旁島」←法王室,和「波拿巴島」←另一個法王室,後再改回。
關於留尼旺熱點......是熱點 hotspot,不是火鍋 hotpot 千萬別弄錯啦~~誰會弄錯啦 (/‵Д′)/~ ╧╧
有另一個【必講不可】,錯過要等到下次大滅絕的梗:
它已經持續活躍了約六千五百萬年了。而每個科宅看到六千五百萬這數字就該心生「該不會和恐龍有關」的聯想。
還真的有關......搞不好有關,或許有關。是這樣,在大約六千六百萬年前的白堊紀的最末期,留尼旺熱點的旺盛活動,噴出海量的「洪流玄武岩」(flood basalt),形成了今天的南印度德干高原的廣大火成岩地帶:德干暗色岩(Deccan traps)。
暫停 ⏸,只要稍微有一點點現代地理常識的同學,就一定會妙麗舉手說「抗議,印度是印度,留尼旺是留尼旺,之間相隔了一個印度洋,熔岩是會飛嗎?」
啊啦~這就是整件事最奇特的地方惹,熔岩不會飛,會飛的,是印度! (???!!!) #抗議無效
中生代末期,本屬於岡瓦那大陸之一部的印度,原本是貼在非洲的東方,但「印澳板塊」不久開始一同加速往東北跑,印度在 *路過*「留尼旺熱點」的上方的「那一瞬間」(就地質時間來說)忽然就被穿了孔,還噴了滿身玄武岩。>////<
印度不以為忤,再帶著整塊玄武岩繼續跑,逐漸封閉了原忒提斯洋的東半部。最後也不減速地一頭撞上了亞洲,形成峰峰相連到天邊的喜馬拉雅山脈。其實說起來,超大陸「岡瓦那」的名稱正是取自印度的一個地名,就不意外非洲印度地質上本是一家了。然後因為韋格納,所以非洲南美洲也本一家。最後南極洲也本與岡瓦那做伙,發現恐龍化石也不意外。
長話短說,熱點源自於地球內部「熱柱」←不是炎柱大哥,是熱柱上升的熱點,相對上不會亂動,但地球表面的板塊卻會相對滑動,往往產生一整條長弧線的火山遺跡,就是被熔出的那一排洞洞。相同的故事在黃石熱點和夏威夷熱點等地都曾發生過、正發生中,那一條火山的遺跡甚至可以用來推知板塊在古代曾經移動的方向。再度點出了留尼旺和夏威夷真是有像。
所以法國版柯南要改到留尼旺島習得各種方便技能了(x)。
_
回到德干暗色岩,每當地球歷史上發生大面積洪流玄武岩(長期大面積活躍的一種火山活動型態)肆虐現世,常會伴隨生態圈的災難性事件,主要是大量排放的火山氣體,足以暖化氣候,改變敏感的生態平衡,給生物圈添亂。#那不就是人類正在做的事
所以其實白堊紀末,恐龍滅絕的原因現在學界仍然有一派提倡著:「笨蛋們,別只看隕石啊,德干暗色岩的火山(留尼旺熱點所射)也很威。殺恐龍之大業,它必定有份!」
而且得利於越來越精確的同位素定年法,火山滅絕派的地質證據也相當充足。例如顯示火山活動大大的早於隕石。看來恐龍的滅絕原因的全貌並不單純。這場「論戰」不能簡單一槌定音~~嗎?
あの.....如果說,火山滅絕派、隕石滅絕派,兩派都說對了豈不妙哉?
這個故事最奇妙最奇妙的一點在於看全局。
有點像韋格納當年盯著地球儀得到靈感。不過這次要看的是中生代末的古地球地圖 ﹝推薦 youtu.be/bzvOMee9D1o?t=327 5:27 秒處﹞,就會觀察到一個奇想天外的,未免也太巧的巧合:
當奇克蘇魯隕石 (Chicxulub asteroid) 砸下來,砸到今天墨西哥猶加敦半島的頂端——依照慣例這邊插入一張北美洲的某暴龍抬頭看了最後一眼的插圖——的同一時間,留尼旺熱點就位在......在隕石坑幾乎準確隔著地心相對的正對面,也就是對蹠點 (antipode) 上面啊。
兩者之間難道有奇妙的關聯?#是緣分是注定好漢剖腹來參見
* 各位若有印象,這個「巨大隕石坑的正對面有火山」的巧合其實在火星上也可以找到好幾處(參看:火星地理學的導讀 www.facebook.com/Nerdxplain/posts/723862905104484)。
考慮隕石以強烈地震波形式釋放的能量,會以各種路徑,穿過地球內部。強烈的震波會團團繞地球、裡裡外外跑好幾趟才平息。而由於球體對稱性,顯然波動在隔著地心的正對面(對蹠點)會有匯聚,好幾次,搖了又搖。
再想如果那兒有一鍋岩漿庫,這樣搖來搖去是否就會像汽水般炸開呢?岩漿和汽水其實蠻像的,溶解了一堆氣體,其氣壓大小是產生火山活動的重要因素。
但可惜——可惜呀,科宅搖搖頭說道——這個絕妙故事,目前還只是理論階段而已。「地震會誘發火山活動說」之中,有許多未確立的環節(推薦國家地理雜誌〈地震會引起火山爆發嗎?科學家為此吵翻天〉一文)不容忽略。
因此「隕石陰錯陽差,引起地球正對面的留尼旺/德干大規模火山爆發,產生的多重打擊,讓鳥類以外的恐龍全滅絕了」→ 雖然聽起來很酷,但請各位暫且不要這樣教小孩。但說來,地球無論物理化學還是生物真的都是一個整體呢。
_
截圖出處為
Julien Pedragosa 12月12日上午5:14 · 片長 7:16
Piton de la Fournaise - Éruption du 7 décembre 2020
www.facebook.com/watch/?v=143579863908905
晶體固體 在 Dd tai Youtube 的最佳解答
分子食物Molecular gastronomy又稱為分子美食、分子料理,被人們稱為未來食物、人造美食,所謂的分子食物是指把葡萄糖、維生素C、檸檬酸、麥芽糖醇等等可食用的化學物質進行組合或改變食材分子結構,再重新組合。也就是從分子的角度製造出無限多的食物,不再受地理、氣候、產量等因素的局限。一些科學家認為,「人造」食物很有可能解決某些地方食物短缺的問題。分子食物是一個在全球風頭正勁的廚藝概念,最早由塞斯和匈牙利物理學家尼古拉斯•庫爾特於1988年提出。大廚利用各種奇異工具,透過物理或者化學的變化,把食材的味道、口感、質地、樣貌完全打散,再重新「組合」成一道新菜。如把固體的食材變成液體甚至氣體食用,或使一種食材的味道和外表酷似另一種食材。又例如用蔬菜製作的魚子醬、馬鈴薯般的冰淇淋、奶油與芝士做的雞蛋、果凍製成生魚片壽司、泡沫狀糕點等。但頂級分子食物製作起來就如同做科學實驗一樣複雜,難度極高,因此價格極高。常見的棉花糖也是分子食物,蔗糖晶體的分子原本有著非常整齊的排列方式,一旦進入棉花糖製作機,機器中心溫度很高的加熱腔釋放出來的熱量會打破晶體的排列,從而使晶體變成糖漿。而加熱腔中有一些比顆粒蔗糖尺寸還小的孔,當糖在加熱腔中高速旋轉的時候,離心力將糖漿從小孔中噴射到周圍。由於液態物質遇冷凝固的速度和它的表面積有關,表面積越大凝固越快。因此從小孔中噴射出來的糖漿就凝固成糖絲,不會黏連在一起。也就是改變食材分子間的組織結構,再重新組合。
晶體固體 在 Crystal & Amorphous - Pinterest 的推薦與評價
晶體 -非晶體固態物質原子的排列所具有的近程有序、長程無序的狀態。對晶體,原子在 ... 常見的非晶態固體有高分子聚合物、氧化物玻璃、非晶態金屬和非晶態半導體等。 ... <看更多>
晶體固體 在 [問題] 分子,晶體,固體間的作用力要如何做連接? - 看板Physics 的推薦與評價
1.常見分子間作用力:離子鍵,如NaCl的形成,Na失去一個電子及Cl得到一個電子
,再經由靜電吸引力吸引形成離子鍵,且有晶體結構為CCP。
如圖所示 https://ppt.cc/xata
小弟我想問的是NaCl分子之間的鍵結是什麼力啊?
簡單問就是剛圖裡鈉離子及氯離子間的黑色線是什麼物理意義? 凡得瓦力?
還是黑線代表著的是一個離子是5條凡得瓦力+一條離子鍵這樣的連接...
完全不懂,好亂 =.=|||
2.常見分子間作用力:共價鍵,如鑽石。
鑽石從碳原子(微觀)開始鍵結到形成鑽石(巨觀)之間的作用力,應該單純只是共
價鍵對吧?
3.非定形體:玻璃,主要成分是二氧化矽。
氧與矽間的鍵結為共價鍵
那從二氧化矽分子間的鍵結(微觀)應為凡得瓦力到形成玻璃(巨觀)
小弟想問的是凡得瓦力的鍵結在巨觀機械強度上有那麼強嗎?(擋風,擋雨)
-------------------------------------------------------------------------
之前有看到板上文章在討論微觀作用力與巨觀現象間的連接
但小弟我自己想巨觀固體及微觀鍵結時,連接不太起來。
感謝回答
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.32.191.54
... <看更多>