《身體記憶比大腦學習更可靠》
這是一本”找感受度”的書
當你要教一個小朋友騎腳車, 游泳, 或是任何技能時, 會鉅細彌遺地把所有執行方法交代清楚才讓他們開始嘗試嗎? 又或者說, 每一個人都會騎腳踏車, 但是隨便找一個人描述一下他們怎麼可以一遍前進一邊維持平恆其實是有困難的
在近代, 絕大多數的學校教育都遵行的笛卡爾”我思故我在” 的身心二元論: 人類的心智是由大腦發展出來的, 而身體只是智慧的一個載體. 因此所有學校教育全力注重在語文數學社會之類的理論課程上, 體育課的時間相對被壓縮. 因為人們相信使用統計化與系統化的學習, 可以有效地提升邏輯與辯思能力, 這也是被認為是未來人類發展的主要方式
從傳說笛卡爾製造了一個女兒的機器人開始, 人類就開始醉心於人工智能的開發. 而過去幾年, 機器首先在西洋棋盤上擊敗了人類之後, 最新的技術AlphaGo也在數年前連續三次完勝人類的圍棋冠軍柯潔! 至此, 人工智能的新紀元降臨, 電腦的運算速度與儲存資訊量是人類所遙不可及的!
完了完了, “機械公敵”的電影世界要成真了..
可是真的是這樣嗎?
我們在街上可以看見越來越多裝配有輔助駕駛的車子, 但是不管什麼品牌的車商, 一開始信誓旦旦的跨下海口他們可以在幾年知道製造出第五級自動駕駛的汽車商 (100%不需要人類), 在過去幾年之中紛紛宣布: 要達到這個目標比他們想像中的困難 (但是只有馬斯克對此還表示出非常大的信心)
在自動駕駛系統中, 設計師把所有的汽車動作透過數據而模組化, 讓它們可以經過運算而在路上控制車體的動作. 但是最大的困難就是在不管是任何道路之中的實際情況是瞬息萬變的, 包含突然改變的風速, 掉落的障礙物, 無預警闖入小動物等等, 這些都與在有固定範圍以及明確規則下的棋盤內不同. 所以我們知道, 將一個醫療機器人放在手機製作的生產線上一定會出現大問題, 因為外在環境已經改變了, 與在電腦內原先預設的演算程式不一樣, 工作人員除了改造外形之外, 也需要重新設計所有軟體
當你聞到了一個熟悉的麵包味道, 回憶會馬上把你拉回兒時放學時經過一家麵包店的情景; 當你看到了前男/女友留下來的一個小物品時, 腦中馬上會浮現在當初在相處時對於這個東西的回憶; 當你聽到了一首流行老歌時, 時空在瞬時間會轉換回到學生時代, 可以讓你徜徉其中不可自拔
我們所認知的世界, 除了先經過大腦的思考與分析之外, 也靠我們其他的感官所汲取的資訊同時輸入所建構起來, 這就是”體驗”. 身體的感知能力, 就是記憶的中心. 在學習時, 讓全身的感官同時參與, 就可以幫我們打造更多層次的大腦地題, 這也是我們在運動時常常提到的”本體感覺”. 我們的五感 (視覺, 聽覺, 觸覺, 味覺與嗅覺) 從身體各處接收到無數資訊後, 轉化為電位傳回中樞神經系統, 而形成了第六感: 直覺
有的時候迷路時, 你會很自然地知道要往哪一個方向轉彎; 在很短時間內要做一個決定時, 你當下會不假思索地做出選擇; 甚至是你可以下意識的分辨出你眼前的這個人是否在說謊. 這些都是直覺, 而直覺靠的就是所有感官經驗的累績. 這不是透過系統模組化與運算就可以做得到的
書中有提到好幾個例子: 華爾街的金融顧問僅僅使用統計分析的數字來決定未來的投資方向, 但是到最後對於市場的預測往往與實際上有很大的落差; 一些消費用品的廣告鎖定了特定的目標族群, 但是經常發現與與想像中買氣完全不一致. 因為第一, 數據呈現的是一個平均值, 無法表明一些誤差的來源, 第二, 冷冰冰的統計結果沒有情感, 無法體現消費者實際市場上瞬息萬變的思考模式
在我個人的記憶力就有一個印相很深的例子: 在某一年, 我服務的某一間公司很大器的砸重金買了上海地鐵二號線一個月的廣告, 二號線總長度接近70公里. 他們在車廂內所有的拉環上都貼上了健身房的廣告, 主打: 在每一站的出口都會有一間xx健身房! 他們希望透過這一波宣傳來大力提昇該月的來訪數. 結果, 隔一個月開高層會議時, 發現前一個月花了大筆鈔票的過靠成效幾乎等於零… 那個月市場部總監被臭幹到差點從樓上跳下去…
可是為什麼會這樣? 因為假如實際每天坐地鐵通勤的人都會知道, 沒人真的去看拉環上寫的是什麼, 所有人都是瘋狂低頭滑手機! 而偏偏當初做這個決定的人, 每天都是開車上下班, 就算有搭乘地鐵, 也只有偶一為之, 所以無法真正的掌握實際狀況
打不死的蟑螂, 存在在地球上的歷史比人類還久, 時至今日, 他們唯一的天敵就是拖鞋. 而我們都有過滿屋子追著小強跑的經驗, 有的時候快把家都翻過來了還不一定打得到牠們, 更別說牠們給你來一了一個更大的驚喜, 飛了起來!!!
蟑螂的大腦只有一百萬的神經元, 而人類卻有一千億個. 但是牠們的腳上卻有無數的知覺接收器官, 可以接收外在的溫度, 壓力, 以及物體移動. 其實另外一個更好的例子就是章魚 (有興趣的可以看一下’’我的章魚老師”)
人類有模仿的本能, 之前1977年的一個實驗就發現出生僅12天的嬰兒的表情就會隨著在他們面前實驗人員的改變而改變. 所以當我們在學習一個新事物的時候, 必須要有一位效仿的對象可以讓我們就近觀察. 在細看他們的過程當中, 我們很自然的會使用上我們所有的感官去做揣摩, 進步是最快的. 所以在每一行業之內, 要最快進入狀況就是找一位師傅或是前輩, 除學習他們的知識以外, 也是吸取他們的技巧與經驗
在看這本書時我一直聯想到我們的這個圈子..
運動也是一樣, 你怎麼可能從書本的圖片就學會怎麼臥推? 你要如何從影片中就學會怎麼深蹲? 這些學習的方式正如人工智能一樣, 把運動分段, 模組化, 但是這些方式無法與你互動, 無法及時給你口令與指導
商業健身房的經理主管每一天瘋狂的開會逼業績, 指責教練為什麼會員約不來? 預約數太少? 他們有沒有實際在健身房中與會員聊過天, 觀察過每一個時段人流的改變? 了解一下目前的環境是否存在一些什麼問題?
有些教練不斷的進修, 認為這樣可以不斷的提升他們的專業度. 但是卻無法理解為什麼自己都這麼苦口婆心了, 會員還是無動於衷? 但是真的願意放慢角度來好好發揮同理心體會一下會員真正想法的教練也不多
因此, 過去我們都把人腦視為一個精密運算的電腦, 但是現在看來, 遠遠不足夠, 還要搭配身體的力行, 強化所有感知與智慧緊密搭配, 才是進步最快的方式
我非常同意功能性訓練大師Michael Boyle的主張: 他完全不建議在健身房內放鏡子. 確實, 在運動時如果我們過度依賴視覺, 反而會削弱其他感官訊息的輸入. 所謂的”本體感覺”, 就是我們可以掌控到我們的身體在什麼速度下, 輸出了多少力量? 移動了多少的距離? 關節與肌肉如何相互的影響?
我覺得這一本書可以讓我們重新的檢視我們學習或是教學的邏輯, 走出過去侷限我們的思考框架, 任何事情使用理智的分析建構固然重要, 但是身體在學習過程中的各種體驗也是不可或缺的, get your hands dirty, 讓我們實際將自身的所有的體驗與大腦連結, 創造出一個更加全面的身心成長!
同時也有8部Youtube影片,追蹤數超過8萬的網紅范琪斐,也在其Youtube影片中提到,唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。 不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢? 因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能...
柯潔 在 Facebook 的精選貼文
人工採收的葡萄酒一定比較好。
但盲飲的狀況下會喝得出來嗎?
🍷 🍷 🍷 🍷 🍷
手工的水餃一定比較好吃?這我不確定,但確定的是一定比較貴。
在這AI飛快進步的年代裡,或許有一天機器採收可以取代人工採收,或是在後疫情的時代,機器採收會越來越被重視。
【微醺大叔下班後】覺得葡萄「人工採收」比「機器採收」好?那你很可能是助長「辦公室冷暴力」的人之一!
我承認標題是下得有點聳動啦!但內文很報導平衡😆😆😆(自己說)
全文請看:https://reurl.cc/qmKeLD
#微醺大叔下班後
「我會抱必勝心態、必死信念。我一定要擊敗 AlphaGo!」對於2017年 5 月 23 日至 27 日與圍棋人工智慧程式 AlphaGo 的對弈,世界排名第一的中國職業九段柯潔放出豪語。
然而,AlphaGo 之父卻說,「我們發明 AlphaGo,並不是為了贏得圍棋比賽。」
真是值得邊喝酒邊玩味的一句話,這麼說來,或許人類就是需要喝點酒才能激發潛力的生物吧!
柯潔 在 GIGAZINE Facebook 的最佳解答
完全無敵の「AlphaGo Zero」でも使われた「AIによる自己学習」の欠点とは?(2018)
https://gigazine.net/news/20180224-why-self-taught-ai-has-trouble/
柯潔 在 范琪斐 Youtube 的最讚貼文
唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數ㄅ10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!
柯潔 在 真電玩宅速配 Youtube 的最佳解答
AI人工智慧勝過人類最著名的例子,絕對是「AlphaGo」接連打敗來自南韓和中國的圍棋高手,一般認為AI要在圍棋中取勝比在西洋棋等遊戲困難許多,
主要是因為圍棋的下棋點極多,然而「AlphaGo」問世後短短兩年,就已經達成這項不可能的任務,也震驚了全世界。
而在電競圈也有人工智慧痛宰職業選手的例子,電競人工智慧「OpenAI」今年三月以2比0戰勝《DOTA2》Ti8世界冠軍「OG戰隊」,
之後更擊敗了來自世界各地的《DOTA2》玩家隊伍,完成了573連勝,這超狂的紀錄一直到4月中旬才交出首敗!
根據外國媒體報導,科技大廠「微軟」將投資10億美元給電競人工智慧「OpenAI」,雙方還達成了一項多年合作協定,
將在微軟的「Azure」雲計算服務平臺上開發人工智慧超級計算技術。有了這筆大投資,人工智慧會不會進化到更驚人的狀態呢?這對人類來說究竟是福是禍,也只能繼續觀察囉~
© Microsoft 2019
© OpenAI
「電玩宅速配」粉絲團:https://www.facebook.com/tvgamexpress
「美女愛玩Game」節目:http://bit.ly/1Qwt7S3
休閒平台:http://myfun.gamedb.com.tw
遊戲庫粉絲團:http://www.facebook.com/Gamedbfans
柯潔 在 我要做富翁 Youtube 的精選貼文
1) Chris生意創業分享會+試堂:https://edu.money-tab.com/chris-sharing
2) 《我要做富翁》網上版登入/APP下載:http://onelink.to/mtapp
3) 緊貼我們社交平台,不錯過任何免費分析/教學:
訂閱YouTube頻道: https://youtube.com/channel/UCdWNwPuaS1o2dIzugNMXWtw?sub_confirmation=1
讚好Facebook專頁:https://facebook.com/203349819681082
==============================
AI捉棋打敗柯潔引起大家對AI既了解,未來趨勢顯而易見是人工智能主宰世界,做老闆的沒有添置AI的資源怎辦,打工的又有否擔心過你會因為AI的降臨而失業?一些重複性的工種很大機會被AI取代,你應該如何去應對,你的下一代又應該如何去迎接新世代?如果你也有興趣知多點AI的未來優勢與影響,歡迎留言告知。Like完post記得分享你的想法,Share埋俾朋友一齊知道全世界AI大方向!
柯潔 在 柯潔的帳號「潛伏」在11月2日時被發現上線「野狐圍... 的推薦與評價
柯潔 的帳號「潛伏」在11月2日時被發現上線「野狐圍棋」平台,並向國立交通大學CGI團隊開發的圍棋程式發出戰帖,但最終仍吞下敗仗,柯潔也在評論區上留言大嘆:「我還是 ... ... <看更多>
柯潔 在 柯潔: 黑白人生,絕不毒行(國際反毒日) - YouTube 的推薦與評價
... <看更多>