✍ 線上課程介紹:現代人工智慧精修班: 建構 6 個專案
人工智慧( AI )是一門使電腦能夠模仿人類智慧的科學,例如決策、推理、文字處理和視覺化概念。人工智慧是一個更廣泛的一般領域,涉及幾個子領域,如機器學習、機器人學和電腦視覺。
為了讓公司變得更有競爭力,並且快速增長,他們需要利用人工智慧的力量來改進流程、降低成本和增加收入。如今,人工智慧在許多領域得到了廣泛的應用,從銀行業到醫療保健、交通運輸和技術等各個行業都在進行轉型。
近年來,人工智慧人才的需求呈指數級增長,而且不再侷限於矽谷!Forbes 雜誌稱,人工智慧技術是 2020 年最受歡迎的技術之一。
本課程的目的是以一種實用、簡單和有趣的方式提供你現代人工智慧應用的關鍵方面的知識。本課程提供學生運用真實世界資料集的實際動手經驗。本課程涵蓋了許多新的主題和應用,如 Emotion AI (情緒人工智慧)、Explainable AI (可解釋的人工智慧)、Creative AI( 創造性人工智慧 ),以及應用在醫療、商業和金融領域的 AI用。
本課程的一個主要特色是我們將使用 Tensorflow 2.0 和 AWS SageMaker 來培訓和部署模型。此外,我們將涵蓋 AI/ML 工作流程的各種元素,包括模型建立、培訓、超參數調整和部署。此外,本課程經過精心設計,涵蓋了諸如機器學習、深度學習和電腦視覺等人工智慧的關鍵技術。
以下是我們將要做的專案摘要:
✅ 專案 #1( Emotion AI): : 情緒分類和基於人工智慧的關鍵人臉點檢測( Facial Points Detection )
✅ 專案 #2(應用在醫療保健中的 AI ) : 使用人工智慧檢測和定位腦腫瘤
✅ 專案 #3(應用在商業/市場行銷的 AI ) : 使用自動編碼器和非監督式學習演算法進行商城客戶區隔( Segmentation )
✅ 專案 #4(應用在商業/金融的 AI ): 使用 AWS SageMaker 的 XG-Boost 演算法( 自動駕駛,AutoPilot )預測信用卡違約
✅ 專案 #5( Creative AI ) : 人工智慧創造藝術作品
✅ 專案 #6( Explainable AI): 使用 GradCam 揭示人工智慧的黑盒特性並可視化隱藏層
對此課程有興趣,請參考底下留言區
同時也有1部Youtube影片,追蹤數超過10萬的網紅熊仔,也在其Youtube影片中提到,🎙️其他平台收聽「三不五時就七步成詩」:https://617kumachan.lnk.to/podcast 錄音/監製 熊仔 剪接 617 後製/outro beat Allen Flex 熊: 從猩猩進化成人類 人類進化成新新人類 進化成12種性情 只能用星星分類 神被擬人化 明星被神化...
「機器學習演算法分類」的推薦目錄:
- 關於機器學習演算法分類 在 軟體開發學習資訊分享 Facebook 的最佳解答
- 關於機器學習演算法分類 在 軟體開發學習資訊分享 Facebook 的最讚貼文
- 關於機器學習演算法分類 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於機器學習演算法分類 在 熊仔 Youtube 的精選貼文
- 關於機器學習演算法分類 在 如何選取機器學習演算法- azure-docs.zh-tw - GitHub 的評價
- 關於機器學習演算法分類 在 機器學習及演算法-第八課人工智慧基礎5(多類別預測模型) 的評價
- 關於機器學習演算法分類 在 行銷資料科學- 【#機器學習演算法-監督與非監督式學習 ... 的評價
- 關於機器學習演算法分類 在 Machine learning - 機器學習地圖| WillyWangkaa 的評價
機器學習演算法分類 在 軟體開發學習資訊分享 Facebook 的最讚貼文
所以你已知道機器學習的理論,並且知道如何建立你的第一個演算法。 現在要做什麼?
許多課程告訴你關於機器學習的基本理論,但沒有帶你深入應用。
本課程提供了一種實戰挑戰的親手實踐,並涵蓋了你在真實的資料科學世界中取得成功所需要的內容。
令人興奮的案例研究包括:
1 早期診斷糖尿病
2 運用應用程式分析指引客戶訂閱產品
3 儘量減少金融業的客戶流失率
4 利用全球定位系統( GPS )資料預測客戶所在地
5 預測未來的貨幣匯率
6 對時尚產品做分類
7 預測乳癌
8 還有更多!
https://softnshare.com/machine-learning-practical/
機器學習演算法分類 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
機器學習演算法分類 在 熊仔 Youtube 的精選貼文
🎙️其他平台收聽「三不五時就七步成詩」:https://617kumachan.lnk.to/podcast
錄音/監製 熊仔
剪接 617
後製/outro beat Allen Flex
熊:
從猩猩進化成人類
人類進化成新新人類
進化成12種性情
只能用星星分類
神被擬人化 明星被神化
造神又毀神正進行著輪迴
人算不如演算法機器或人為
你選擇清醒 或 繼續沈睡
到處都是暗示 到處都是算式
到處都是關鍵字
到處是商機 所到處都被算計
結帳買個乾電池
到處都是三角形
到處躲不過全知眼之直視
到處都是JAY Z throw your diamonds in the sky
現在四點四十四
Shout out 阿法Frankie woo
歡迎來上三七步
還是不信占星術
不是我的專精 不隨便沾邊
不隨便亂起舞
再跟我說統計學
子不學你媽斷機杼
617:
神創造了天地 保持夯保別開先例
4000年前摩西寫在石頭上 fuck亞當
有夠娘 法老王 他打槍 降下十災
下個時代 會再來 真的主是耶穌彌賽亞
這不是秘密 不是命令不是泥濘
這種命運 都是命定 像盤古開天闢地
我就是不信星座別跟我鬧BB鴨
別跟我說是統計學 不動腦操你媽
我有黃金比例機器學習你被淘汰不剩下 滅絕拉
Background beat
side chen
rohan mills
rgry
cozyboy
Allen Flex
📢 數位收聽《88BARS》 : https://kumachan.lnk.to/88BARS
🔔 訂閱頻道 : https://sonymusic.pse.is/KumaChan
/Follow 熊仔 /
熊仔 Instagram : https://www.instagram.com/poeteknology/
熊仔 Facebook : https://www.facebook.com/poeproduction/
熊仔 Weibo : https://www.weibo.com/u/3919089509
/Follow 6yi7/
6yi7Instagram:https://www.instagram.com/6.y.i.7/
Sony Music Taiwan CPOP - 華語粉絲團
https://www.facebook.com/SonymusicTaiwanCPOP/
Sony Music Taiwan CPOP - Instagram
https://www.instagram.com/sonymusic_taiwan/
#熊仔
#三不五時就七步成詩
#podcast
機器學習演算法分類 在 機器學習及演算法-第八課人工智慧基礎5(多類別預測模型) 的推薦與評價
這是國防醫學院醫學系及公共衛生研究所在上學期開設的課程,本課程利用目前最流行的統計程式語言(R語言/Python),逐步帶領學生 學習 資料處理、數據 ... ... <看更多>
機器學習演算法分類 在 行銷資料科學- 【#機器學習演算法-監督與非監督式學習 ... 的推薦與評價
圖1為常見的機器學習演算法,以監督式學習(Supervised Learning)與非監督式學習(Unsupervised Learning)為分類的基礎。 在監督式學習裡,通常要達到 ... ... <看更多>
機器學習演算法分類 在 如何選取機器學習演算法- azure-docs.zh-tw - GitHub 的推薦與評價
如何在群集、分類或回歸實驗中,為受監督和非監督式的學習選取Azure Machine Learning 演算法。 machine-learning. machine-learning. core. conceptual. how-to. ... <看更多>