【散熱劃時代革命-液冷散熱】
時間:2021/8/1
發文:NO.1287篇
大家好,我是 LEO
.
❖晶片效能越強-解熱難度越高
隨著半導體晶片發展-體積越來越小,電晶體密度越來越高,逐漸朝向高性能,超薄,微型化發展,電子元件散熱的空間越來越小,單位面積內所產生的熱能卻越來越高,無論是手機、電腦發熱發熱密度皆呈現指數級增長,此外,加密貨幣挖礦場,大型伺服器與資料中心,高階CPU、GPU產生的熱能更為驚人,如果熱能不能快速有效散出,輕則影響效能,嚴重會導致電腦或手機產生「電子遷移效應」,導致當機無法工作。
.
❖台積電未雨綢繆超前部署
今年7月台積電在超大型積體電路 (VLSI) 研討會,展示晶片水冷研究結果,採用水通道直接引導到晶片,藉此提高晶片散熱效率。聽起來覺得不可思議,為什麼突然做這項研究?傳統晶片散熱-在晶片上塗導熱矽脂,將熱量傳到散熱器底部,導熱管、水冷管再將熱量導到鰭片,最後風扇將鰭片的熱量吹走,完成散熱。
.
但是,若未來晶片採用 3D 堆疊技術,最新的SoIC先進封裝可以任意組合各種不同製程的晶片,除了記憶體甚至還能直接將感測器一起封裝在同一顆晶片裡面,線路的密度將是2.5D的1000倍,散熱就會遇到大瓶頸。
.
3D堆疊晶片設計更複雜,更小的微縮製程,把晶片一層一層的堆疊起來,中間部分難以有效散熱,所以台積電的研究人員認為,解決方法就是讓水在夾層電路間流動,讓水直接從晶片內帶走熱量,這是最有效的方案,這裡指的水並非一般純水,而是不會導電的介電液,實際上操作起來非常複雜且昂貴,目前處於研究階段,這顯示出解決晶片散熱問題,將是半導體產業未來重要發展趨勢之一。
.
❖晶片改朝換代推動-伺服器新設計
我們從上面描述可以知道新晶片設計只會更小,更複雜,更熱,而伺服器產業面臨的問題會更大,試想大型資料處理中心,裡面有多少伺服器?多少高階CPU、GPU都是24小時不斷電持續運作,龐大的熱能如何處理?當處理器的瓦數越來越高,一般來說,處理器的熱設計功耗超過240W就很難用風扇(氣冷)來解決,偏偏霸主Intel或是AMD新一代處理器動輒超過270甚至280W,現在馬上面臨到需要液冷散熱來帶走熱量。
.
❖跟著產業霸主的方向走準沒錯
Intel在伺服器市場,主流解決方案以x86架構為主,全球 CPU市占率約 92%左右。未來Intel 仍將保持產業龍頭的地位,圍繞它的 CPU平台的升級仍是影響伺服器硬體產業鏈周期性變化的關鍵因素。
.
2021 年第一季開始Intel最新的 Whitley Ice Lake 的處理器已向資料中心業者小量出貨,第二季開始放量,到第四季預估將占總出貨量的 40%,滲透率將大幅且快速提升,下一步,Intel英特爾預計 2022 年初量產支援 PCIe Gen5 的 Eagle Stream 平台,將會加速升級資料傳輸速度。
.
❖英特爾正式將水冷散熱放進白皮書
有趣的事情來了,產業龍頭也意識到新平台-散熱問題非常棘手,2020年Whitley平台是intel「首度」將水冷頭(注意:非浸沒式)納入技術白皮書,更誇張的事情是未來的新平台 Eagle Stream第一顆CPU Sapphire Rapids至少 300W以上,甚至將來很多GPU會達到500瓦甚至700W以上,水冷散熱方案成為唯一解方,冷卻液監控主機(CDU)與水冷頭(覆蓋在處理器上方的水冷散熱片)全世界只有三家廠商通過Intel認證,台灣的廣運(6125)是唯一兩項全拿的合格供應商。
.
❖節能減碳-省電又可以賺積分
歐盟在7月剛通過55套案,其中碳邊境調整機制,又稱碳關稅,預計自2023年起試行,2026年正式實施,先從鋼鐵、電力等產業先行,但是用電大戶的資料中心無法置身事外,跟大家分享一個數字會比較有概念,2017年中國數據中心總耗電量為1200-1300億KW,超過三峽大壩與葛洲壩電廠2017年全年發電量總和(分別為976億KW、190億KW),占中國總發電量的2%,到了2025年資料中心耗電將高達 3842億KW,占全中國總發電量的 6%,這隻吃電怪獸肯定會被盯上,高排碳業者會被課較高關稅(碳關稅),將進一步帶動資料中心業者積極導入液冷散熱達到「省電」與「節能減碳」的效果,甚至有望仿效電動車Tesla透過碳積分來挹注獲利,可望大幅提高液冷散熱滲透率。
.
❖水冷散熱技術門檻高-不簡單
2021年3月26日雲端資料中心伺服器開發商---緯穎科技宣佈,參與資料中心液冷廠商LiquidStack的A輪融資,並取得一席董事席位,其實早在2019年緯穎就與3M合作開發液冷方案,但是3M的電子氟化液是非導電-介電液是一種專利配方,掌握在3M手中,未來耗材都需向3M購買補充,入股LiquidStack可望取得自主技術。
.
大家知道這種-不導電的「介電液」有多貴嗎?1公斤要價100美元,一個180KW的機櫃光是介電液裝滿就要價1000萬,重點是這個介電液每年都會耗損,需要定時補充,這樣就知道賣水的概念有恐怖、有多賺了吧,得介電液者得天下。
就算目前短期重點放在一般的「冷卻水」,得到英特爾認證的兩款冷卻水,一個櫃的成本大約7~8萬元,廣運集團研發成功的介電液打七折賣,一公斤70美元就相當有競爭力,而冷卻水一個櫃更只需要8000元,重點是水要通過認證,水在管線裡面跑如何恆久不變質?裡面還必須添加抗凍劑、苔癬抑制劑等特殊配方,是不是很多眉角!這些都是LEO深入研究去挖出來的。
.
❖廣運(6125)上中下游整套系統全部整合
目前有三大產品線,水冷背門(20~25萬)/櫃,水冷頭(100~150萬)/櫃-目前英特爾首度放入新平台技術白皮書,已通過Intel認證,浸沒式機櫃(1000萬)/櫃,此外還有最重要的冷卻液監控主機(CDU)它是水冷散熱技術的根源,還有各種耗材、管線、冷卻水、介電液都是未來的發展重點。
.
傳統散熱模組雖然便宜,一個42U的機櫃,風扇加散熱模組成本頂多台幣8~10萬,但將來水冷變成剛性需求,水冷頭機櫃,水對氣120~150萬/櫃,水對水90~120萬/櫃,全球的資料中心大約有 500萬櫃,每年新增30萬櫃左右,大家可以算看看,這產值增速有多恐怖。
.
目前全世界只有2家公司有能力量產伺服器等級水冷頭機櫃,雙鴻、超眾這些傳統大廠要跨入最難的CDU(水冷監控主機)至少需要5年以上的參數與經驗值,而廣運的陳總已經深耕30年的散熱產業經驗,水冷頭機櫃的五大關鍵零件--廣運擁有四項(CDU、水冷頭、分岐管、制冷背門)盲插或快接頭,這個產業很新,很多法人也還沒那麼了解,有很多眉角,很多技術秘密,篇幅有限今天LEO就先介紹的這邊。
.
如果大家想知道更多關於這個新的「水冷散熱產業」訊息,請鎖定 LEO股民當家團隊的頻道喔,⧉傳送門在下方↓
.
❖Line群組傳送門⤵
https://lihi1.com/jjjwf
❖TG 頻道傳送門⤵
https://t.me/stock17168
天佑台灣,疫情早日結束❤️
「硬體加速gpu要開嗎」的推薦目錄:
- 關於硬體加速gpu要開嗎 在 股民當家 幸福理財 Facebook 的最佳解答
- 關於硬體加速gpu要開嗎 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於硬體加速gpu要開嗎 在 台灣企業儲存技術論壇 Facebook 的最讚貼文
- 關於硬體加速gpu要開嗎 在 [請益] 收看TWITCH實況GPU使用率100% - 看板VideoCard 的評價
- 關於硬體加速gpu要開嗎 在 WIN10 2004(新增的) 硬體加速GPU排程打開? - Mobile01 的評價
- 關於硬體加速gpu要開嗎 在 最新趨勢觀測站- windows 10硬體加速gpu ptt的推薦與評價 的評價
- 關於硬體加速gpu要開嗎 在 硬體加速要開嗎-在PTT/巴哈姆特上手遊推薦遊戲排行攻略整理-2022 ... 的評價
- 關於硬體加速gpu要開嗎 在 iPhone 瘋先生- 分享最近搞定顯示卡eGPU加速和實現HEVC硬 ... 的評價
- 關於硬體加速gpu要開嗎 在 硬體rd ptt 的評價
- 關於硬體加速gpu要開嗎 在 [閒聊] 硬體加速CPU排程- 看板Marginalman - PTT網頁版 的評價
- 關於硬體加速gpu要開嗎 在 WIN10 2004 - 硬體加速GPU排程開啟 - YouTube 的評價
硬體加速gpu要開嗎 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
軟體吞噬硬體的 AI 時代,晶片跟不上演算法的進化要怎麼辦?
作者 品玩 | 發布日期 2021 年 02 月 23 日 8:00 |
身為 AI 時代的幕後英雄,晶片業正經歷漸進持續的變化。
2008 年之後,深度學習演算法逐漸興起,各種神經網絡滲透到手機、App 和物聯網。同時摩爾定律卻逐漸放緩。摩爾定律雖然叫定律,但不是物理定律或自然定律,而是半導體業發展的觀察或預測,內容為:單晶片整合度(積體電路中晶體管的密度)每 2 年(也有 18 個月之說)翻倍,帶來性能每 2 年提高 1 倍。
保證摩爾定律的前提,是晶片製程進步。經常能在新聞看到的 28 奈米、14 奈米、7 奈米、5 奈米,指的就是製程,數字越小製程越先進。隨著製程的演進,特別進入10 奈米後,逐漸逼近物理極限,難度越發增加,晶片全流程設計成本大幅增加,每代較上一代至少增加 30%~50%。
這就導致 AI 對算力需求的增長速度,遠超過通用處理器算力的增長速度。據 OpenAI 測算,從 2012 年開始,全球 AI 所用的演算量呈現等比級數增長,平均每 3.4 個月便會翻 1 倍,通用處理器算力每 18 個月至 2 年才翻 1 倍。
當通用處理器算力跟不上 AI 演算法發展,針對 AI 演算的專用處理器便誕生了,也就是常說的「AI 晶片」。目前 AI 晶片的技術內涵豐富,從架構創新到先進封裝,再到模擬大腦,都影響 AI 晶片走向。這些變化的背後,都有共同主題:以更低功耗,產生更高性能。
更靈活
2017 年圖靈獎頒給電腦架構兩位先驅 David Petterson 和 John Hennessy。2018 年圖靈獎演講時,他們聚焦於架構創新主題,指出演算體系結構正迎來新的黃金 10 年。正如他們所判斷,AI 晶片不斷出現新架構,比如英國 Graphcore 的 IPU──迥異於 CPU 和 GPU 的 AI 專用智慧處理器,已逐漸被業界認可,並 Graphcore 也獲得微軟和三星的戰略投資支援。
名為 CGRA 的架構在學界和工業界正受到越來越多關注。CGRA 全稱 Coarse Grained Reconfigurable Array(粗顆粒可重構陣列),是「可重構計算」理念的落地產物。
據《可重構計算:軟體可定義的計算引擎》一文介紹,理念最早出現在 1960 年代,由加州大學洛杉磯分校的 Estrin 提出。由於太過超前時代,直到 40 年後才獲得系統性研究。加州大學柏克萊分校的 DeHon 等將可重構計算定義為具以下特徵的體系結構:製造後晶片功能仍可客製,形成加速特定任務的硬體功能;演算功能的實現,主要依靠任務到晶片的空間映射。
簡言之,可重構晶片強調靈活性,製造後仍可透過程式語言調整,適應新演算法。形成高度對比的是 ASIC(application-specific integrated circuit,專用積體電路)。ASIC 晶片雖然性能高,卻缺乏靈活性,往往是針對單一應用或演算法設計,難以相容新演算法。
2017 年,美國國防部高級研究計劃局(Defence Advanced Research Projects Agency,DARPA)提出電子產業復興計劃(Electronics Resurgence Initiative,ERI),任務之一就是「軟體定義晶片」,打造接近 ASIC 性能、同時不犧牲靈活性。
照重構時的顆粒分別,可重構晶片可分為 CGRA 和 FPGA(field-programmable gate array,現場可程式語言邏輯門陣列)。FPGA 在業界有一定規模應用,如微軟將 FPGA 晶片帶入大型資料中心,用於加速 Bing 搜索引擎,驗證 FPGA 靈活性和演算法可更新性。但 FPGA 有局限性,不僅性能和 ASIC 有較大差距,且重程式語言門檻比較高。
CGRA 由於實現原理差異,比 FPGA 能做到更底層程式的重新設計,面積效率、能量效率和重構時間都更有優勢。可說 CGRA 同時整合通用處理器的靈活性和 ASIC 的高性能。
隨著 AI 演算逐漸從雲端下放到邊緣端和 IoT 設備,不僅演算法多樣性日益增強,晶片更零碎化,且保證低功耗的同時,也要求高性能。在這種場景下,高能效高靈活性的 CGRA 大有用武之地。
由於結構不統一、程式語言和編譯工具不成熟、易用性不夠友善,CGRA 未被業界廣泛使用,但已可看到一些嘗試。早在 2016 年,英特爾便將 CGRA 納入 Xeon 處理器。三星也曾嘗試將 CGRA 整合到 8K 電視和 Exynos 晶片。
中國清微智慧 2019 年 6 月量產全球首款 CGRA 語音晶片 TX210,同年 9 月又發表全球首款 CGRA 多模態晶片 TX510。這家公司脫胎於清華大學魏少軍教授起頭的可重構計算研究團隊,從 2006 年起就進行相關研究。據芯東西 2020 年 11 月報導,語音晶片 TX210 已出貨數百萬顆,多模組晶片 TX510 在 11 月也出貨 10 萬顆以上,主要客戶為智慧門鎖、安防和臉部支付相關廠商。
先進封裝上位
如開篇提到,由於製程逼近物理極限,摩爾定律逐漸放緩。同時 AI 演算法的進步,對算力需求增長迅猛,逼迫晶片業在先進製程之外探索新方向,之一便是先進封裝。
「在大數據和認知計算時代,先進封裝技術正在發揮比以往更大的作用。AI 發展對高效能、高吞吐量互連的需求,正透過先進封裝技術加速發展來滿足。 」世界第三大晶圓代工廠格羅方德平台首席技術專家 John Pellerin 聲明表示。
先進封裝是相對於傳統封裝的技術。封裝是晶片製造的最後一步:將製作好的晶片器件放入外殼,並與外界器件相連。傳統封裝的封裝效率低,有很大改良空間,而先進封裝技術致力提高整合密度。
先進封裝有很多技術分支,其中 Chiplet(小晶片/芯粒)是最近 2 年的大熱門。所謂「小晶片」,是相對傳統晶片製造方法而言。傳統晶片製造方法,是在同一塊矽晶片上,用同一種製程打造晶片。Chiplet 是將一塊完整晶片的複雜功能分解,儲存、計算和訊號處理等功能模組化成裸晶片(Die)。這些裸晶片可用不同製程製造,甚至可是不同公司提供。透過連接介面相接後,就形成一個 Chiplet 晶片網路。
據壁仞科技研究院唐杉分析,Chiplet 歷史更久且更準確的技術詞彙應該是異構整合(Heterogeneous Integration)。總體來說,此技術趨勢較清晰明確,且第一階段 Chiplet 形態技術較成熟,除了成本較高,很多高端晶片已經在用。
如 HBM 儲存器成為 Chiplet 技術早期成功應用的典型代表。AMD 在 Zen2 架構晶片使用 Chiplet 思路,CPU 用的是 7 奈米製程,I/O 使用 14 奈米製程,與完全由 7 奈米打造的晶片相比成本約低 50%。英特爾也推出基於 Chiplet 技術的 Agilex FPGA 系列產品。
不過,Chiplet 技術仍面臨諸多挑戰,最重要之一是互連介面標準。互連介面重要嗎?如果是在大公司內部,比如英特爾或 AMD,有專用協議和封閉系統,在不同裸晶片間連接問題不大。但不同公司和系統互連,同時保證高頻寬、低延遲和每比特低功耗,互連介面就非常重要了。
2017 年,DARPA 推出 CHIPS 戰略計劃(通用異構整合和 IP 重用戰略),試圖打造開放連接協議。但 DARPA 的缺點是,側重國防相關計畫,晶片數量不大,與真正商用場景有差距。因此一些晶片業公司成立組織「ODSA(開放領域特定架構)工作組」,透過制定開放的互連介面,為 Chiplet 的發展掃清障礙。
另闢蹊徑
除了在現有框架內做架構和製造創新,還有研究人員試圖跳出電腦現行的范紐曼型架構,開發真正模擬人腦的計算模式。
范紐曼架構,數據計算和儲存分開進行。RAM 存取速度往往嚴重落後處理器的計算速度,造成「記憶體牆」問題。且傳統電腦需要透過總線,連續在處理器和儲存器之間更新,導致晶片大部分功耗都消耗於讀寫數據,不是算術邏輯單元,又衍生出「功耗牆」問題。人腦則沒有「記憶體牆」和「功耗牆」問題,處理訊息和儲存一體,計算和記憶可同時進行。
另一方面,推動 AI 發展的深度神經網路,雖然名稱有「神經網路」四字,但實際上跟人腦神經網路運作機制相差甚遠。1,000 億個神經元,透過 100 萬億個神經突觸連接,使人腦能以非常低功耗(約 20 瓦)同步記憶、演算、推理和計算。相比之下,目前的深度神經網路,不僅需大規模資料訓練,運行時還要消耗極大能量。
因此如何讓 AI 像人腦一樣工作,一直是學界和業界積極探索的課題。1980 年代後期,加州理工學院教授卡弗·米德(Carver Mead)提出神經形態工程學的概念。經過多年發展,業界和學界對神經形態晶片的摸索逐漸成形。
軟體方面,稱為第三代人工神經網路的「脈衝神經網路」(Spike Neural Network,SNN)應運而生。這種網路以脈衝信號為載體,更接近人腦的運作方式。硬體方面,大型機構和公司研發相應的脈衝神經網路處理器。
早在 2008 年,DARPA 就發起計畫──神經形態自適應塑膠可擴展電子系統(Systems of Neuromorphic Adaptive Plastic Scalable Electronics,簡稱 SyNAPSE,正好是「突觸」之意),希望開發出低功耗的電子神經形態電腦。
IBM Research 成為 SyNAPSE 計畫的合作方之一。2014 年發表論文展示最新成果──TrueNorth。這個類腦計算晶片擁有 100 萬個神經元,能以每秒 30 幀的速度輸入 400×240pixel 的影片,功耗僅 63 毫瓦,比范紐曼架構電腦有質的飛躍。
英特爾 2017 年展示名為 Loihi 的神經形態晶片,包含超過 20 億個晶體管、13 萬個人工神經元和 1.3 億個突觸,比一般訓練系統所需的通用計算效率高 1 千倍。2020 年 3 月,研究人員甚至在 Loihi 做到嗅覺辨識。這成果可應用於診斷疾病、檢測武器和爆炸物及立即發現麻醉劑、煙霧和一氧化碳氣味等場景。
中國清華大學類腦計算研究中心的施路平教授團隊,開發針對人工通用智慧的「天機」晶片,同時支持脈衝神經網路和深度神經網路。2019 年 8 月 1 日,天機成為中國第一款登上《Nature》雜誌封面的晶片。
儘管已有零星研究成果,但總體來說,脈衝神經網路和處理器仍是研究領域的方向之一,沒有在業界大規模應用,主要是因為基礎演算法還沒有關鍵性突破,達不到業界標準,且成本較高。
附圖:▲ 不同製程節點的晶片設計製造成本。(Source:ICBank)
▲ 可重構計算架構與現有主流計算架構在能量效率和靈活性對比。(Source:中國科學)
▲ 異構整合成示意動畫。(Source:IC 智庫)
▲ 通用處理器的典型操作耗能。(Source:中國科學)
資料來源:https://technews.tw/2021/02/23/what-to-do-if-the-chip-cannot-keep-up-with-the-evolution-of-the-algorithm/?fbclid=IwAR0Z-nVQb96jnhAFWuGGXNyUMt2sdgmyum8VVp8eD_aDOYrn2qCr7nxxn6I
硬體加速gpu要開嗎 在 台灣企業儲存技術論壇 Facebook 的最讚貼文
包括 Intel, Microsoft, Google, Facebook, HPE, Cisco, Dell-EMC, Huawei 和 Alibaba(咦,不是有中美貿易大戰嗎?)在內的資料中心巨人們,宣佈合作共同創建一個新的、晶片到晶片間的高速網路組織,稱為「運算高速連接」(Compute Express Link, CXL)。
根據 Intel 的聲明,這個新組織的目的是「在連接的設備上保持 CPU 記憶體空間和記憶體之間的記憶體一致性,從而實現更高的性能、更低的軟體堆疊複雜性和更低的整體系統成本。這可以讓使用者只關注目標工作負載,而不是在其加速器中的冗餘記憶體管理硬體」。白話翻譯就是讓 CPU, SOC, GPU 和 FPGA 直接對話,共享記憶體,不用再繞道速度慢、疊層架屋的外部網路進行溝通。
在此之前有 AMD, Arm, Mellanox, Qualcomm, Xilinx, 和 Huawei 共組的 CCIX,還有 AMD, Google, IBM, Mellanox, Micron, Nvidia, HPE, Dell EMC, 和 Xilinx 的 OpenCAPI 組織,也都是相同的目的。明顯的目標市場是在人工智慧與大數據等高速運算領域,但因為在這個領域中 SDS 也扮演了重要的角色,所以它未來對儲存網路會不會有影響力,值得關注。
後話,最近的新聞突然對網路(臉書)小編出現了很多的關注。老實說,要做一個稱職的小編其實並不容易,特別是像我們這種專業度這麼高的專頁。
根據小編工作手則(誤),對粉絲們就是要保持一種有點黏又不會太黏的貼文頻率,這其實是很難的!(大誤)尤其是沒有新文章可以貼時,小編就要開始去找有什麼具有價值的網路資訊可以轉貼分享給讀者們,傷腦筋啊⋯⋯
硬體加速gpu要開嗎 在 WIN10 2004(新增的) 硬體加速GPU排程打開? - Mobile01 的推薦與評價
4 https://news.xfastest.com/microsoft/82235/amd-win10-gpu/ ... 經過TIMESPY 測試開啟後反而效能倒退且EDGE 瀏覽器捲動畫面圖像會有凍結感所以就又 ... ... <看更多>
硬體加速gpu要開嗎 在 硬體加速要開嗎-在PTT/巴哈姆特上手遊推薦遊戲排行攻略整理-2022 ... 的推薦與評價
再次進行硬體加速效能的的評測,可以明顯看出分數比剛才還要高出一些,證明開啟GPU加速功能成功! ,舉例來說,如要讓100 位使用者在虛擬桌面上同時使用Chrome 瀏覽器,則 . ... <看更多>
硬體加速gpu要開嗎 在 [請益] 收看TWITCH實況GPU使用率100% - 看板VideoCard 的推薦與評價
各位好,先上電腦配備
CPU:AMD ATHLON 3000G(VEGA 3)
MB:ASROCK A320M-ITX
RAM:Crucial Ballistix DDR4 3600 16G ×2 (以3400頻率運行)
最近這兩天看TWITCH實況在1080p 60fps情況下時常出現GPU使用率直接100%情形,
在這之前都沒有這情形,但觀看YOUTUBE的直播一樣1080p 60fps卻不會有飆高情況,
都是有開啟硬體加速的狀況,但僅會發生於看TWITCH的狀況下,使用EDGE也會。
目前已測試改善方式:
關閉硬體加速→有解決,但之前開啟都沒卡頓問題
DDU移除驅動重裝→一樣發生
安裝最新版本和較舊版驅動→一樣發生
移除電腦內所有編碼軟體→一樣發生
關閉ADBLOCK→一樣發生
無痕視窗收看→一樣發生
開啟3D遊戲(GW2)→可以正常遊玩 無卡頓問題,使用率不會常態100%
記憶體降頻至3200、2666→一樣發生
重新安裝晶片組驅動→一樣發生
觀看本機4k影片→順暢撥放
只差把CHROME砍掉重裝了,但乾淨的EDGE一樣有同情況,已經搞不清楚是硬體翻車還是
TWITCH翻車還是GOOGLE翻車。
這台電腦去年12月組好,一直都主要當成看TWITCH直播用副電腦,今天才開始有這問題,
GPU使用率在TWITCH 1080P 60狀況下會上100%,先前有更新主機板BIOS到最新版,但應該
與BIOS無關。
不知版上是否有人有同樣情形?謝謝。
TWITCH & YOUTUBE 觀看直播使用率狀況:
--
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.41.147.209 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/VideoCard/M.1644070680.A.B24.html
※ 編輯: k5648550577 (114.41.147.209 臺灣), 02/05/2022 22:20:09
... <看更多>