七月的第一天,虹安在線上參加了第十屆工程、技術與STEM教育研討會,今年主辦單位是宜蘭大學資訊工程學系、協辦單位是成功大學工程科學系、IEEE台北分會 Young Professionals Group,研討會主題為「結合跨領域的工程教育」。虹安從資訊學碩士再到機械博士,現今又在立法院服務,橫跨了三個領域,當天的演講主題是「數據科學與國家治理」,由於疫情的關係,只能在線上跟各位老朋友、學界伙伴相見。
💡 科普時間:什麼是STEM教育?
✒ STEM,是四個英文字的第一個字母結合而成--科學(Science)、科技(Technology)、工程(Engineering)、數學(Mathematics)--是近年相關產業最喜歡用的關鍵字,歐美也有許多STEM教育的相關計畫,希望未來教育能從「知識傳遞」進化為「學以致用」,著重於科學、科技、工程、與數學的跨領域資訊整合,使知識成為可用資源的思維。
虹安首先以自身的學習、工作經歷作為開場,就讀資訊工程系所時的虹安,也跟你我的學生時期一樣,熬夜寫程式debug、拼命K書📚、做研究;到了機械博班的階段,要在博士班的過程一口氣弄懂機械系學生四年學到的內容,結合自身的資工背景,激發出insight 💡變成博士論文。過程中也曾經怨嘆過為什麼想不開,為什麼要跨領域讓自己這麼累;再到了科智的創業時期,獲得了 #全球創業賽第一名 的殊榮,跨領域的學習逐漸展現出成果;接著又到了鴻海集團擔任工業大數據辦公室主任貢獻所學,同時也擔任郭台銘創辦人的特助,命運的際遇讓我來到了立法院擔任第十屆立法委員。這次跨離了工程領域,虹安仍然戰戰兢兢,但過往累積的經驗與能量,使我能把立委的角色擔任好,虹安的大數據專長讓我問政時更能以事實和邏輯分析為根據,以數據避免政治口水,也為立院帶來了不同的科技思維。
#而且立院的同事跟科技業的很不一樣
接著,虹安以「數據思維的重要性」作為切入,說明了零售業龍頭Amazon建立了「線下」實體通路的用意是什麼、又如何決定什麼商品該在架上展示,現今的一切,不再用經驗法則決定,而是 #大數據驅動的結果,「妥善用數據分析就能看到別人看不到的價值」。在2011年,發源於辛辛那提的奇異(GE)公司,發表了GE Industrial Internet System,舉例說明了 Product (or Service) Data Life Cycle,強調了數據收集、數據比對與分析、決策改善等三個要素的Life cycle,這Life cycle適用於各領域的大數據分析和應用,重點是,以數據驅動需求的首要原則是:From gut feeling To data agility,將主觀意識下有限的數據來源,轉變到客觀心態下更大更完整的#開放式數據來源,如此一來,養成數據化的工作模式,就能得到洞察數據敏感力,看到別人看不到的價值。
而在 #國家治理方面,虹安舉了去年質詢陳時中部長的 #口罩地圖 為例,說明了大數據分析用於口罩分配的成果😷,並可解決城鄉口罩用量不同的物流輸送問題,使每個需要的人都可以買到口罩。各縣市的口罩分配不應該只是齊頭式平等;而我用的方式,就是上述的「數據收集、數據比對與分析、決策改善」三要素;虹安才能以明確的數據質詢蘇院長,7600萬片口罩到底去了哪裡。除此之外,虹安在立院密切關注的,還有 #數位發展部 的成立。數位發展部源自國家對於數位科技產業及發展的重視,成立數位發展部以進行國家數位發展政策之規劃、協調、推動與法規擬定及執行,並著重國家資通安全政策、法規、重大計畫與資源分配之擬定、指導及監督,這會是虹安在立院第四個會期的重要工作項目。
值得一提的是,會後教授們的提問十分精闢,虹安大致整理如下:
①女性工程師的教育環境、社會支持的情況
②科研成果的產出,凝聚成政策推動的的能量,再從政策回到高等教育的增進,形成正向循環的方式
③數位發展部的角色對於高等教育的影響,是否與科技部/國科會有所不同
很謝謝學界朋友的交流,這次的演講讓我暫離政治圈回到本業,虹安將會從這些面向進行研議與推動,希望我的分享也能給予學界跨領域的交流與互動。
#回歸自己的本業既熟悉又開心
#跨領域最難的是要花很多時間讀書
#想了解虹安的歷程可看面試郭台銘
「科學城物流面試」的推薦目錄:
- 關於科學城物流面試 在 高虹安 Facebook 的最佳解答
- 關於科學城物流面試 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於科學城物流面試 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於科學城物流面試 在 [請益]科學城物流倉管儲備VS中鋼技術員- 看板Salary 的評價
- 關於科學城物流面試 在 最新趨勢觀測站- 科學城ptt的推薦與評價,PTT、MOBILE01 的評價
- 關於科學城物流面試 在 最新趨勢觀測站- 科學城ptt的推薦與評價,PTT、MOBILE01 的評價
- 關於科學城物流面試 在 [公司] 科學城物流股份有限公司- Salary - MYPTT 的評價
- 關於科學城物流面試 在 台螢實業Ptt. 台螢實業股份有限公司面試薪資搜尋結果 的評價
- 關於科學城物流面試 在 科學城物流股份有限公司面試趣- 華儲物流設備ptt 的評價
科學城物流面試 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
甲骨文預測十大雲端趨勢 九成IT任務將完全自動化
【CTIMES/SmartAuto 王岫晨 報導】 2020年03月09日 星期一
在正式邁入2020年之際,甲骨文預測未來技術和企業商業模式將發生以下十大變化:
預測1:90%的手動IT操作和資料管理任務將完全自動化
自主資料庫(Autonomous Database)的普及,將改變技術人員需大量時間處理的日常工作,例如備份、擴充、調校、監測和保護關鍵資訊系統。甲骨文預測,90%的手動IT操作和資料管理任務將在2025年完全自動化,工程師將有更多時間發展人工智慧和機器學習等先進技術。例如,自主學習系統可以橫跨多個應用程式自動收集資料,自動以視覺化方式,圖形、圖表和動畫等,呈現數百萬個資料點,讓身處業務部門的終端使用者不必再費心製作和研究傳統報表,能更輕鬆地找出資料中潛藏的趨勢、規律和關聯性。甲骨文相信,在雲端的推動下,這些先進技術將日益普及,走向主流。
預測2:雲端共用的敏感性資料將擴增600倍
如今,70%的企業都將重要業務資料儲存在雲端。其中大多數企業採用混合雲,也就是將一部分關鍵業務系統保留在本地部署環境中,而將大部分資料轉移至雲端。面對不斷升級的攻擊方式,確保資料和系統彈性對於企業至關重要。然而,由於網路安全人員嚴重短缺,企業沒有足夠的專業人才來確保安全性。攻擊者能夠輕易對未安裝修補程式的系統發起攻擊。因此,為了防範層出不窮的網路攻擊,企業的最佳選擇是部署自主系統,將進階安全功能融入所有層級——從應用、資料到晶片的IT基礎設施。
預測3:幾乎所有的企業應用都將包含某種形式的嵌入式AI技術
透過改變企業接收、管理和保護資料的方式,人工智慧正推動著企業智慧轉型。甲骨文表示,如今許多企業已經意識到,並開始積極部署AI技術以提高工作效率、生產力並降低成本。甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。這將協助企業高階主管和決策者更快速、深入地了解公司營運、員工、市場和客戶狀況。
預測4:絕大多數供應鏈應用將取決於區塊鏈、機器學習、物聯網等技術
如今智慧自動化系統運用於各行各業,推動系統設計、物流、製造、基礎設施等典範轉移。而在供應鏈領域,日益增加的客戶期望、不斷縮短的產品週期、各種新的法規和波動不定的需求正不斷挑戰傳統系統的極限,並推動採用新興技術。其中,區塊鏈建立匿名、不可篡改的去中心化、分散式和數位化事務記錄功能,也解決傳統供應鏈面臨的重大挑戰,使全球性的供應鏈,物料和產品在多個供應商、製造商、經銷商、運輸商和服務提供者間流通順暢。虛擬實境(VR)和擴增實境(AR)界面則可以為員工提供更高水準的沉浸式體驗,例如藉助3D的呈現方式,技術員可以更視覺化地查看設備與配置。語音助手可以查找產品資訊、報告生產進度,以及傳達來自IoT感測器關於當前狀況的分析。
預測5:流程的自動化將擁有更多個人化體驗
甲骨文認為,人工智慧和自主技術持續深入工作場所,簡化企業日常業務流程,讓業務人員專注於更有意義、更有價值的人際互動。例如,自動化工作流程可以追蹤求職者、處理新員工請求以完善整個招聘流程;據預測,2025年人工智慧和機器人將接管70%的招募工作。AI技術可以基於職位要求審查求職者背景,幫助人力資源團隊找到最合適的人選;聊天機器人可以與求職者溝通和安排面試。這些自動化功能將大幅減輕人力的日常負擔,讓HR團隊專注於招募符合企業文化的優秀人才。
預測6:80%的大城市將使用物聯網技術,開啟智慧城市計畫
物聯網技術的發展使社區得以變得更加人性化與靈活。截至2025年,80%的大城市將運用物聯網資料,開啟智慧城市計畫。長遠來看,物聯網技術能夠改善市民間的合作和信任,有助於打造更加團結的城市。隨著這些技術日益普及、成本不斷降低,許多社區將部署固定的監視器和可穿戴設備等智慧資源,進一步提高安全性和透明度。除了上述例子,智慧城市計畫還涵蓋彈性能源和智慧交通等領域。
預測7:資料科學自動化程度不斷提高
利用高等數學和統計學等獨特技能、機器學習和AI技術,資料科學家能夠將大量資料轉化為實際可行的計畫。隨著企業越來越深刻地認識資料驅動的價值,企業對資料科學家的需求也在不斷增長。若按照目前的發展趨勢,到2025年,資料科學家的數量將無法滿足企業不斷增長的人才需求。幸運的是,隨著AI和機器學習技術不斷發展,越來越多的資料科學工作都將自動化,從而大幅提高技術人才的工作效率。此外,隨著AI系統不斷升級,它們將更有效地為業務用戶創造洞察並對結果加以解釋,進而讓資料科學家騰出時間專注於更有價值的工作。
預測8:AI機器的興起將催生出前所未有的職業
隨著越來越多的機器使用AI與人類互動,它已逐漸成為企業重要的勞動力。在擁有機器員工的企業中,業務主管必須設法讓它們更有效地彼此合作。另一方面,雖然自動化的興起將排除部分手動和重複性工作,但AI的普及同時也將創造全新工作機會及新的職業類型。2025年,機器處理的工作量將達到人類的兩倍。雖然自動化的興起可能會讓員工有所擔憂,但從長遠來看,它能夠促進全球經濟發展,讓人們專注於價值更高的工作,並提高人們的生活品質。
預測9:網路安全將隨著物聯網和人工智慧的廣泛應用變得更加複雜
機器學習技術能幫助企業改善營運,但也可能成為網路駭客的「幫兇」。現在駭客已經會編寫自動化系統來攻擊企業網路,竊取敏感性資料,而人工智慧和物聯網技術很快也將被加以利用。甲骨文預測,2025年,80%的資安攻擊將來自企業內部。從網路服務到資料庫,現代企業技術體系的每個層面都有可能出現被駭客利用的漏洞。很多情況下,企業無法快速安裝安全修補程式、自動化的缺失也導致人為錯誤風險居高不下。在甲骨文看來,面對不斷成長的安全威脅,企業的最佳選擇是運用自主技術來自動修補程式,24小時全天候地確保系統完整性。
預測10:80%的資料將與「物」相關
在未來幾年,大多數安全威脅都與物聯網的「物」相關。例如,據Forrester預測,駭客會阻斷家庭照明系統等產品的網路連接,或者干擾工廠製程系統的運行,並用這些設備作為「人質」,要求製造商支付大筆贖金。截至2025年,80%的身份資料將與「物」相關,而不是「人」。屆時身份資料的規模將達到前所未有的水準,且大多分佈在使用者、應用和生態系統中。以情境感知(context)為基礎的身份資料會連結行為、位置、使用模式、系統資訊等相關資料,網路安全專家可以利用這些資料、機器學習和AI技術來預測行為和模式,揭露潛在安全威脅。借助機器學習和預測分析,企業將能夠提高系統能見度,以進階的自動化水準發現可疑活動。
附圖:甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。
資料來源:http://www.ctimes.com.tw/DispNews/tw/2003091812QW.shtml
科學城物流面試 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
甲骨文預測十大雲端趨勢 九成IT任務將完全自動化
【CTIMES/SmartAuto 王岫晨 報導】 2020年03月09日 星期一
在正式邁入2020年之際,甲骨文預測未來技術和企業商業模式將發生以下十大變化:
預測1:90%的手動IT操作和資料管理任務將完全自動化
自主資料庫(Autonomous Database)的普及,將改變技術人員需大量時間處理的日常工作,例如備份、擴充、調校、監測和保護關鍵資訊系統。甲骨文預測,90%的手動IT操作和資料管理任務將在2025年完全自動化,工程師將有更多時間發展人工智慧和機器學習等先進技術。例如,自主學習系統可以橫跨多個應用程式自動收集資料,自動以視覺化方式,圖形、圖表和動畫等,呈現數百萬個資料點,讓身處業務部門的終端使用者不必再費心製作和研究傳統報表,能更輕鬆地找出資料中潛藏的趨勢、規律和關聯性。甲骨文相信,在雲端的推動下,這些先進技術將日益普及,走向主流。
預測2:雲端共用的敏感性資料將擴增600倍
如今,70%的企業都將重要業務資料儲存在雲端。其中大多數企業採用混合雲,也就是將一部分關鍵業務系統保留在本地部署環境中,而將大部分資料轉移至雲端。面對不斷升級的攻擊方式,確保資料和系統彈性對於企業至關重要。然而,由於網路安全人員嚴重短缺,企業沒有足夠的專業人才來確保安全性。攻擊者能夠輕易對未安裝修補程式的系統發起攻擊。因此,為了防範層出不窮的網路攻擊,企業的最佳選擇是部署自主系統,將進階安全功能融入所有層級——從應用、資料到晶片的IT基礎設施。
預測3:幾乎所有的企業應用都將包含某種形式的嵌入式AI技術
透過改變企業接收、管理和保護資料的方式,人工智慧正推動著企業智慧轉型。甲骨文表示,如今許多企業已經意識到,並開始積極部署AI技術以提高工作效率、生產力並降低成本。甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。這將協助企業高階主管和決策者更快速、深入地了解公司營運、員工、市場和客戶狀況。
預測4:絕大多數供應鏈應用將取決於區塊鏈、機器學習、物聯網等技術
如今智慧自動化系統運用於各行各業,推動系統設計、物流、製造、基礎設施等典範轉移。而在供應鏈領域,日益增加的客戶期望、不斷縮短的產品週期、各種新的法規和波動不定的需求正不斷挑戰傳統系統的極限,並推動採用新興技術。其中,區塊鏈建立匿名、不可篡改的去中心化、分散式和數位化事務記錄功能,也解決傳統供應鏈面臨的重大挑戰,使全球性的供應鏈,物料和產品在多個供應商、製造商、經銷商、運輸商和服務提供者間流通順暢。虛擬實境(VR)和擴增實境(AR)界面則可以為員工提供更高水準的沉浸式體驗,例如藉助3D的呈現方式,技術員可以更視覺化地查看設備與配置。語音助手可以查找產品資訊、報告生產進度,以及傳達來自IoT感測器關於當前狀況的分析。
預測5:流程的自動化將擁有更多個人化體驗
甲骨文認為,人工智慧和自主技術持續深入工作場所,簡化企業日常業務流程,讓業務人員專注於更有意義、更有價值的人際互動。例如,自動化工作流程可以追蹤求職者、處理新員工請求以完善整個招聘流程;據預測,2025年人工智慧和機器人將接管70%的招募工作。AI技術可以基於職位要求審查求職者背景,幫助人力資源團隊找到最合適的人選;聊天機器人可以與求職者溝通和安排面試。這些自動化功能將大幅減輕人力的日常負擔,讓HR團隊專注於招募符合企業文化的優秀人才。
預測6:80%的大城市將使用物聯網技術,開啟智慧城市計畫
物聯網技術的發展使社區得以變得更加人性化與靈活。截至2025年,80%的大城市將運用物聯網資料,開啟智慧城市計畫。長遠來看,物聯網技術能夠改善市民間的合作和信任,有助於打造更加團結的城市。隨著這些技術日益普及、成本不斷降低,許多社區將部署固定的監視器和可穿戴設備等智慧資源,進一步提高安全性和透明度。除了上述例子,智慧城市計畫還涵蓋彈性能源和智慧交通等領域。
預測7:資料科學自動化程度不斷提高
利用高等數學和統計學等獨特技能、機器學習和AI技術,資料科學家能夠將大量資料轉化為實際可行的計畫。隨著企業越來越深刻地認識資料驅動的價值,企業對資料科學家的需求也在不斷增長。若按照目前的發展趨勢,到2025年,資料科學家的數量將無法滿足企業不斷增長的人才需求。幸運的是,隨著AI和機器學習技術不斷發展,越來越多的資料科學工作都將自動化,從而大幅提高技術人才的工作效率。此外,隨著AI系統不斷升級,它們將更有效地為業務用戶創造洞察並對結果加以解釋,進而讓資料科學家騰出時間專注於更有價值的工作。
預測8:AI機器的興起將催生出前所未有的職業
隨著越來越多的機器使用AI與人類互動,它已逐漸成為企業重要的勞動力。在擁有機器員工的企業中,業務主管必須設法讓它們更有效地彼此合作。另一方面,雖然自動化的興起將排除部分手動和重複性工作,但AI的普及同時也將創造全新工作機會及新的職業類型。2025年,機器處理的工作量將達到人類的兩倍。雖然自動化的興起可能會讓員工有所擔憂,但從長遠來看,它能夠促進全球經濟發展,讓人們專注於價值更高的工作,並提高人們的生活品質。
預測9:網路安全將隨著物聯網和人工智慧的廣泛應用變得更加複雜
機器學習技術能幫助企業改善營運,但也可能成為網路駭客的「幫兇」。現在駭客已經會編寫自動化系統來攻擊企業網路,竊取敏感性資料,而人工智慧和物聯網技術很快也將被加以利用。甲骨文預測,2025年,80%的資安攻擊將來自企業內部。從網路服務到資料庫,現代企業技術體系的每個層面都有可能出現被駭客利用的漏洞。很多情況下,企業無法快速安裝安全修補程式、自動化的缺失也導致人為錯誤風險居高不下。在甲骨文看來,面對不斷成長的安全威脅,企業的最佳選擇是運用自主技術來自動修補程式,24小時全天候地確保系統完整性。
預測10:80%的資料將與「物」相關
在未來幾年,大多數安全威脅都與物聯網的「物」相關。例如,據Forrester預測,駭客會阻斷家庭照明系統等產品的網路連接,或者干擾工廠製程系統的運行,並用這些設備作為「人質」,要求製造商支付大筆贖金。截至2025年,80%的身份資料將與「物」相關,而不是「人」。屆時身份資料的規模將達到前所未有的水準,且大多分佈在使用者、應用和生態系統中。以情境感知(context)為基礎的身份資料會連結行為、位置、使用模式、系統資訊等相關資料,網路安全專家可以利用這些資料、機器學習和AI技術來預測行為和模式,揭露潛在安全威脅。借助機器學習和預測分析,企業將能夠提高系統能見度,以進階的自動化水準發現可疑活動。
附圖:甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。
資料來源:http://www.ctimes.com.tw/DispNews/tw/2003091812QW.shtml
科學城物流面試 在 [公司] 科學城物流股份有限公司- Salary - MYPTT 的推薦與評價
公司名稱:科學城物流股份有限公司2.應徵部門/職務/工作地點:報關OP / 台南新市3.欲了解之公司資訊: 最近收到這間公司的面試,想請問各位前輩這間公司評價工作環境薪資 ... ... <看更多>
科學城物流面試 在 台螢實業Ptt. 台螢實業股份有限公司面試薪資搜尋結果 的推薦與評價
籍聘僱與人力統計、 管理科學城物流公司、聯合服務大樓廠商引進、. 員證照之核發、園區氣體供需之協調、園區交通及停車場之管理、園. 服務內容. ... <看更多>
科學城物流面試 在 [請益]科學城物流倉管儲備VS中鋼技術員- 看板Salary 的推薦與評價
最近去科學城物流面試有關倉儲儲備幹部
因為我個人並沒有工作經驗 也只是私立中等大學 所以也不太敢開價碼
在這裡經歷了兩次面試 從特助 課長 經理 副總
覺得他們是有培訓的機制在 雖然一方面就是要你花更多心力
除了培訓人才 對於他們也挺划算的
一開始價碼開28K 三個月後上手了 30K
想請問的是 若認真做 在此行業大約需要多久才能破百呢
若跟中鋼技術員(底薪加一些有的沒的獎金)比起來
薪資方面似乎中鋼還比較吃香?
說真的對於科學城還挺有興趣的 但是有點擔心薪資會卡
也不敢問主管他們的薪資落在哪個範圍XD
想請問板上有沒有前輩大概知道呢
之前有前輩說會卡 25k~35K 這樣一年也無法破百
不知是否真是如此呢 因為我看他一開始敢開30K給我這沒工作經驗的小夥子
感覺滿有誠意的><
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 219.69.68.172
... <看更多>