看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
同時也有1部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 從拉氏 (Laplace) 轉換的定義開始,然後計算了幾個基本函數的拉氏轉換的結果,並條列了拉氏轉換的重要運算律 (如函數微分、積分或折積以後的轉換公式),到特殊函數 (如單位脈衝函數,Dirac function) 的拉氏轉換,最後以兩個拉氏轉換再解微分方程上的應用作結 【加入會員】 ...
解微分方程 在 黃土條 Facebook 的最佳解答
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
解微分方程 在 PanSci 科學新聞網 Facebook 的最佳解答
#電腦簡史 瓦特改良蒸汽機後,自動運轉機器紛紛出現,但計算機仍依賴手動操作。
發明家夢中的自動運作計算機到了二戰後才真正完成,機械式計算機從此逐漸淡出歷史,數位時代展開了新的一頁。
延伸閱讀:
為了預測潮汐,將面積儀改裝成解微分方程的計算機│《電腦簡史》(二十三)
https://pansci.asia/archives/188940
人口普查、打孔卡片、IBM——第一台插電的計算機│《電腦簡史》數位時代(一)
https://pansci.asia/archives/189683
————
全新計畫《科學生線上學習平台》問卷募集中!填答就有機會獲得精美好禮:https://crowdfundiing.typeform.com/to/CC8XFvbi
解微分方程 在 數學老師張旭 Youtube 的最佳貼文
【摘要】
從拉氏 (Laplace) 轉換的定義開始,然後計算了幾個基本函數的拉氏轉換的結果,並條列了拉氏轉換的重要運算律 (如函數微分、積分或折積以後的轉換公式),到特殊函數 (如單位脈衝函數,Dirac function) 的拉氏轉換,最後以兩個拉氏轉換再解微分方程上的應用作結
【加入會員】
歡迎加入張旭老師頻道會員
付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片
https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【會員等級說明】
博士等級:75 元 / 月
- 支持我們拍攝更多教學影片
- 可在 YT 影片留言處或聊天室使用專屬貼圖
- 你的 YT 名稱前面會有專屬會員徽章
- 可觀看會員專屬影片 (張旭老師真實人生挑戰、許願池影片)
- 可加入張旭老師 YT 會員專屬 DC 群
碩士等級:300 元 / 月
- 享有博士等級所有福利
- 每個月可問 6 題高中或大學的數學問題 (沒問完可累積)
學士等級:750 元 / 月
- 享有博士等級所有福利
- 每個月可問 15 題高中或大學的數學問題 (沒問完可累積)
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額不可轉讓)
家長會等級:1600 元 / 月
- 享有博士等級所有福利
- 沒有解題服務,如需要,得另外購入點數換取服務
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額可轉讓)
- 可參與頻道經營方案討論
- 可免費獲得張旭老師實體產品
- 可以優惠價報名參加張旭老師所舉辦之活動
股東會等級:3200 元 / 月
- 享有家長會等級所有福利
- 一樣沒有解題服務,如需要,得另外購入點數換取服務
- 本頻道要募資時擁有優先入股權
- 可加入張旭老師商業結盟
- 可參加商業結盟餐會
- 繳滿六個月成為終生會員,之後可解除自動匯款
- 終生會員只需要餐會費用即可持續參加餐會
【勘誤】
2:15:00 分子算錯 是s^2+6s+9 by kuokuo kuo
有任何錯誤歡迎留言告知
【習題】
無
【講義】
無
【附註】
本系列影片僅限 YouTube 會員優先觀看
非會員僅開放「單數集」影片
若想看到所有許願池影片
請加入數學老師張旭 YouTube 會員
加入會員連結 👉 https://reurl.cc/Kj3x7m
【張旭的話】
你好,我是張旭老師
這是我為本頻道會員所專門拍攝的許願池影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學大學數學的同學們,謝謝
【學習地圖】
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 (https://youtu.be/SByv7fMtMTY)
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:重製中
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 👈 目前在這裡
EP12:Fourier 級數與 Fourier 轉換 (https://youtu.be/85q-2nInw7Y)
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 (https://youtu.be/9c-lCLV4F0M)
EP15:極限、微分和積分次序交換的條件 (https://youtu.be/QRkGLK7Iw4c)
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
持續更新中...
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#拉氏轉換 #拉氏反轉換 #解微分方程
解微分方程 在 Re: [工數] 解微分方程使用Fourier傅立葉及Lapla … - 看板Math 的推薦與評價
題目是這樣的
-2t
y'-2y = u(t)exp
若用lapalce解 令L{y} = Y(s)
(s-2)Y(s) -c = 1/ (s+2)
1 c 1 1 1 c
Y(s) = ---------- + ----------- = --- (--- - ---) + ---
(s-2)(s+2) (s-2) 4 s-2 s+2 s-2
2t -2t 2t
=> y(t) = (1/4){ e - e }+ c{e }
若用fourier解 令F{y} = Y(w)
1 (-2-jw)t| 無窮大 1
(jw)Y - 2Y = -------- e | = --------
(-2-jw) | 0 (2+jw)
-1
Y = -------
w^2 + 4
-2|t|
=> y(t) = (-1/4)e (這是課本的標準解答)
比較兩邊的解答 ... 發現 t>0 解才一樣
而傅立業轉換解不出通解
實際上我的疑問應該是...
一般一個微分方程 題目若沒特別指定
應該用Laplace 還是用 Fourier
如果給了I.C 一般會用Laplace求解 而解應該要在 t>0 才成立
但是我參考的兩本課本上 解答都沒有特別標明 t>0 是我的理解錯誤嗎
給B.C的話 會用Fourier 求解
解出特徵方程式(特解)
但沒給BC 為什麼通解會消失
感謝
※ 引述《StevnCurry (Sap)》之銘言:
: 有個觀念不太清楚
: 想請教大家
: 就是一般解微分方程時
: 如果不特別給初始I.C或邊界條件B.C
: 題目一般會指定用哪種方法解
: 但我手賤兩種方法都算看看
: 發現
: 用拉式解會解出通解跟特解
: 而且拉式解出的答案只有 t>0 是正確的 要特別標明y(t)= xxx, t>0
: 用富立葉只能解出特解,t屬於R
: t>0的部分兩種方法答案是相同的
: 請問這個結論是對的嗎
: 感謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.249.204.23
※ 編輯: StevnCurry 來自: 111.249.204.23 (08/17 12:55)
... <看更多>