摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
同時也有7部Youtube影片,追蹤數超過90萬的網紅五件小事,也在其Youtube影片中提到,★更多五件小事 →INSTAGRAM:http://instagram.com/reyeslim/ →脸书:https://www.facebook.com/FiveKnow/ →社交网址:https://FiveKnow.com 五件小事|Wu Jian Xiao Shi 所謂黑科技 是指超...
超越人腦 在 經濟一週 EDigest Facebook 的精選貼文
【#投資有道】投資人工智能相關股分是時間尚早還是剛剛好?
#人工智能 #ARK #契媽 #投資 #經濟一週 #ED_V
超越人腦 在 經濟一週 EDigest Facebook 的最佳解答
【#投資有道】牛市時就叫契媽,熊市叫咩好?不如認真研究Cathie Wood投資緊啲咩
#Cathiewood #ARKinvest #美股 #EDAPP13
超越人腦 在 五件小事 Youtube 的最佳解答
★更多五件小事
→INSTAGRAM:http://instagram.com/reyeslim/
→脸书:https://www.facebook.com/FiveKnow/
→社交网址:https://FiveKnow.com
五件小事|Wu Jian Xiao Shi
所謂黑科技
是指超乎人類知識水平的科技。
它們似乎不可能存在,
卻確確實實存在了,
它們超越了一般人類的認知,
卻實實在在地被研發出來。
這麼一說,
我們也只能感嘆人腦
果然是有無限可能了。
今天,五件小事為你帶來
凌駕於我們科技知識之上的黑科技 0:00
5:儲電 0:31
4:3D打印仿生眼 1:58
3:隱形衣 3:07
2:隔空充電技術 4:18
1:聲波滅火 5:24
-----------------------------------------------------------------------------------------
★参考资料:
https://lnnk.in/gRbv
超越人腦 在 志祺七七 X 圖文不符 Youtube 的精選貼文
生活中的3C產品竟然都跟「加工出口區」有關係?
半導體封測產業群聚在這裡蓬勃發展,科技產業含金量超乎你的想像!
#加工出口區 #半導體封測產業群聚
經濟部加工出口區管理處:https://www.epza.gov.tw/
✔︎ 成為七七會員(幫助我們繼續日更,並享有會員專屬福利):https://bit.ly/3eYdLKp
✔︎ 訂閱志祺七七頻道: http://bit.ly/shasha77_subscribe
✔︎ 追蹤志祺IG :https://www.instagram.com/shasha77.daily
✔︎ 來看志祺七七粉專 :http://bit.ly/shasha77_fb
✔︎ 如果不便加入會員,也可從這裡贊助我們:https://bit.ly/support-shasha77
(請記得在贊助頁面留下您的email,以便我們寄送發票。若遇到金流問題,麻煩請聯繫:service@simpleinfo.cc)
各節重點:
00:00 前導
01:27 什麼是「半導體」?
02:39 台灣的半導體產業
04:19 IC封裝測試是什麼?
06:30 高科技的加工出口區
07:59 我們的觀點
09:34 結尾
【 製作團隊 】
|企劃:冰鱸
|腳本:冰鱸
|編輯:土龍
|剪輯後製:絲繡
|剪輯助理:范范、歆雅
|演出:志祺
——
【 本集參考資料 】
→一顆新5G晶片的誕生會經過哪些步驟?白話文解析IC產業鏈全貌:https://bit.ly/2FQpS0s
→半導體(wiki):https://bit.ly/2HzGhH7
→積體電路封裝(wiki):https://bit.ly/362QNRj
→隨著半導體技術與需求不斷演進的封測產業:https://bit.ly/3mTuG5R
→5G時代封測端如何打破「三明治」格局?:https://bit.ly/3i3SGzi
→半導體產業鏈簡介:https://bit.ly/3j3ocim
→什麼是IC封測:封裝與測試的流程步驟:https://bit.ly/33Z6V3t
→晶圓代工爭霸戰:半導體知識(前傳):https://bit.ly/3mQtpMO
→一看就懂的 IC 產業結構與競爭關係:https://bit.ly/3j3OXTV
→『半導體產業』:晶片有如人腦般聰明,運用在人類 6 大領域,迎接智能新時代!:https://bit.ly/3mOdAWN
→謝金河:誰來經營大高雄?:https://bit.ly/3jgbf53
→一顆晶片翻轉世界:https://bit.ly/331nDA5
→差距擴大?!中國封測行業最「接近」海外競爭對手的幾個真相:https://bit.ly/2HqFVSN
→〈分析〉後摩爾定律時代 先進封測設備前景怎麼看?:https://bit.ly/369O08O
→超越南韓!2019 年台灣重回半導體產值第二,2020 年市場將谷底翻揚:https://bit.ly/2RXhYob
→百位先鋒回娘家!加工出口區管理處歡慶53週年:https://bit.ly/3mOdCxT
→高雄電子走過半世紀 百名老員工「回娘家」歡聚:https://bit.ly/3csVN2P
→特別企畫》走過50年…看台灣半導體 如何由勞力賺外匯 成功扭轉成全球指標產業?:https://bit.ly/3cuTCvo
→台灣半導體科技的幕後推手與展望:https://bit.ly/362R9Y9
\每週7天,每天7點,每次7分鐘,和我們一起了解更多有趣的生活議題吧!/
🥁七七仔們如果想寄東西關懷七七團隊與志祺,傳送門如下:
106台北市大安區羅斯福路二段111號8樓
🟢如有業務需求,請洽:hi77@simpleinfo.cc
🔴如果影片內容有誤,歡迎來信勘誤:hey77@simpleinfo.cc
超越人腦 在 李基銘漢聲廣播電台-節目主持人-影音頻道 Youtube 的最佳貼文
本集主題:「編劇魂:說故事是本能,寫劇本沒有教條,用文學素養和科學思維孕育你的傑作」介紹
訪問作者:小野
內容簡介:
★「臺灣新浪潮電影重要推手」首次公開四十年編劇心法,科學方法直指核心,突破框架激發潛能。★
編劇是可以教的嗎?說故事有沒有通則?
故事大綱要寫多長?劇本有所謂的「格式」嗎?
正邪對抗、角色轉變是鐵律?導演期待看到什麼?
文學電影和電影小說有什麼不一樣?
《牯嶺街少年殺人事件》的人物從二十個變成兩百個;「三廳電影」帶來錢潮,也帶來局限;《成功嶺上》扭轉了僵化的愛國主義,學生電影一再翻新。田野調查只是基本功課,故事的選擇要像顯微切片一樣精準。創作關乎思想,技術只能輔助;故事和風格都是為了描繪主題,角色之間的關係隨時都像化學變化一般質變,情緒節奏帶來如力學原理般的力量,劇情發展發展簡直像是一場考古發掘的過程。劇本結構是用來表達創作者的創作觀點和形式。
被稱為「臺灣新電影浪潮運動重要推手」的作家小野,第一次公開從七○年代初入電影圈沉澱至今的心路歷程,並以特殊的「科學/文學」斜槓背景,帶來一套難忘的「野式編劇法則」,用第一手經驗帶領讀者認識電影劇本,然後,超越電影劇本。
於臺灣電影產業起飛、沉寂,又再度興盛的四十年間,小野曾身為電影的企劃、編劇、製片、原著作者、版權銷售和劇本改編,甚至行銷等角色,也歷經兩家電視台在變革時的重要角色。近四年更擔任台北影視音實驗敎育機構的校長及教授編劇實作課。
本書中,小野首度把電影圈如此豐富的實戰經驗轉化為文字,並透過八十部經典電影賞析,佐以珍貴的部分劇本原稿,傾囊相授獨門心法,深入淺出趣味十足。若你是電影工作者、學生,或喜愛電影的人,亦或是電影研究者、評論者或是相關內容製造者,本書都將帶給你全然不同的觀點。
「我們得充滿真摯的情感,有一種非說不可的慾望,一切才可以開始。」──小野
【PART 1 我就這樣開始寫劇本】
在中央電影公司,我陸續遇到了一些天才型的編劇和導演,和一堆正要燃燒熱情的電影人。八年來他們天天坐在你的對面,天天到你家來煩你,天天談的都是劇本,當然也會發些牢騷,傾吐祕密。當一起得奬時在臺上相互擁抱流下眼淚。其實和那麼多的天才在一起工作和生活,並不是什麼幸福的事。因為和天才在一起,學不到什麼東西,他們在創作過程渾然天成,你看不到什麼具體技巧,更糟糕的是,你會越來越自卑。我扛著一大袋自己寫的企業書、行銷計劃、票房紀錄和劇本回家,告訴自己暫時安靜下來,把這些非常難得的經驗寫成一本「工具書」。而這本書的構想,一放就放了三十年。
【PART 2編劇的六種科學方法】
對我而言,要替電影編劇找到一套可以教授的方法,是不太可能的。可是在我自己編劇的過程中,卻不斷的冒出一些自創的「方法」,而這些方法卻是一些科學方法。所謂的科學方法,是從科學知識中找到一個最接近劇本創作的思考及運作方式,所以最终仍然是要依靠人腦。這些方法是在過去很長一段時間像是靈感一樣忽然跳出來,本身也像是另一種創作。終於在一個適當的時機,我把這些科學方法公開。在公開之前,我陸續在一些大學的編劇工作坊試著告訴學生,像是找到一種新藥,做人體實驗,效果不錯。
【PART 3文學如何改編成電影】
我不斷把文學作品引進電影和電視,除了想讓更多人藉由大衆傳播媒體認識文學作品外,更貪心的希望能因此促進臺灣的文化創意產業。對我而言,浸淫在大量的文學改編成電影的寶貴經驗中,終於也發現到一些奇妙的東西,一些過去不曾思考過的問題。於是我決定把這些「發現」寫出來和大家分享。同時也覺得用小說改編成電影劇本,是給初學者最好的方法之一。讀一本好的小說,看一部好的電影,如果能夠找到改編的方式,我想你會距離「寫劇本」又更接近了一些。試試看你的潛力,相信你一定可以的。
作者簡介:小野
本名李遠。台灣師範大學生物系畢業,曾經前往美國紐約州立大學水牛城分校(University at Buffalo, the State University of New York)攻讀分子生物學,也曾經擔任國立陽明大學和紐約州立大學水牛城分校助教。
1981年受明驥總經理之邀進入中央電影公司,擔任製片企劃部企劃組的組長,和當時的同事吳念真及新鋭導演侯孝賢、楊德昌、柯一正、萬仁、張毅等共同推動影響台灣電影發展深遠的「台灣新浪潮電影運動」。電影劇本五度入圍電影金馬獎,並以《恐怖分子》、《我們都是這樣長大的》、《刀瘟》等獲得英國國家編劇獎、亞太影展及金馬獎最佳劇本獎。
二十四歲時以《蛹之生》、《試管蜘蛛》等小說成為七○年代暢銷作家。創作類別豐富多元,小說、散文、詩及童話。並屢次獲獎,包括第二屆聯合報文學獎首獎、中國時報舉辦讀者票選「四十年來影響我們最深的書籍」,《蛹之生》一書獲選為七○年代十大最重要書籍。目前文學創作已經超過一百部、電影劇本三十部。
曾經出任台北電影節創始第一、二屆主席。在電視工作方面,擔任過台灣電視公司節目部經理,及中華電視公司公共化後第一任對外徵選的總經理。長年參與不少社會運動,包括敎育改革、環境保護、基本人權、土地權等,為「千里步道運動」的發起人之一。
近年來更努力倡議「文化在野」的觀念及投入影視音人才培育的計畫,現任臺北市文化基金會董事長及台北市影視音實驗教育機構校長,成為大家口中的「小野校長」。《編劇魂》是他在長期創作及敎學後第一本工具書,想要和讀者們分享自己長期累積的創作經驗。
作者粉絲頁: TMS臺北市影視音實驗教育機構
出版社粉絲頁: 積木生活實驗室
請大家支持,我全部六個粉絲頁
李基銘主持人粉絲頁:https://www.facebook.com/voh.lee
李基銘新聞報粉絲頁:https://www.facebook.com/voh.happy
李基銘的影音頻道粉絲頁:https://www.facebook.com/voh.video
漢聲廣播電台「fb新鮮事」節目粉絲頁:https://www.facebook.com/voh.vhbn
漢聲廣播電台「快樂玩童軍」節目粉絲頁:https://www.facebook.com/voh.scout
漢聲廣播電台「生活有意思」節目粉絲頁:https://www.facebook.com/voh.life