KINH NGHIỆM PHỎNG VẤN VỚI GIÁO SƯ & THẦY CÔ TRƯỜNG
Bài viết được chia sẻ từ 1 bạn HannahEd hỗ trợ hồ sơ được offer học bổng Giáo sư Phd cả ở Mỹ và châu Au.
🖍1. Trước khi phỏng vấn nên:
- Ôn tập kiến thức toán, machine learning, computer vision.
- Xem lại những gì đã viết ở CV và SoP, cố gắng nghĩ ra những câu mà giáo sư có thể hỏi và trả lời các câu hỏi đó.
🖍2. Tự tin khi phỏng vấn: Trong lúc phỏng vấn giáo sư sẽ tạo không khí vui vẻ và không bao giờ tạo áp lực cho các bạn. Bản thân tôi cũng từng được giáo sư động viên: “Có hơn 200 CV
gửi đến, tôi chỉ phỏng vấn 15 người. Do đó, bạn nên tự tin vào bản thân mình”.
🖍3. Bình tĩnh khi phỏng vấn: tôi xin kể 1 mẫu chuyện bản thân để các bạn dễ hình dung hơn.
VD: lúc phỏng vấn câu thứ 1 giáo sư hỏi: nhân 2 ma trận kích thước 10000x10000. Làm sao để tăng tốc độ tính toán? Tôi trả lời: multi-thread. Giáo sư lại nói có cách khác không và tôi không biết câu trả lời. Tôi không biết câu trả lời là vì các câu trước đó giáo sư hỏi về lập trình nên tôi tự mặc định tìm kiếm câu trả lời sử dụng kiến thức lập trình. Câu hỏi tiếp theo giáo sư hỏi: bạn có biết eigenvalue là gì không? Tới đây tôi đã biết hướng trả lời cho câu hỏi trước (hi vọng các bạn cũng biết) là dùng kiến thức toán, không phải lập trình và tôi xin giáo sư trả lời lại cho câu hỏi trước đó. Do đó, bình tĩnh rất quan trọng khi các bạn không trả lời được câu hỏi.
Ngoài ra, từ ví tụ trên, nếu có một câu hỏi về kiến thức chuyên môn bạn không trả lời được thì câu hỏi tiếp theo giáo sư thường sẽ gợi ý cho câu hỏi trước. Tuy nhiên, không phải lúc nào
cũng vậy. Có giáo sư khi chuyển chủ đề phỏng vấn (vd: từ code sang toán) thì sẽ thông báo cho sinh viên.
🖍4. Kiến thức: Đây là phần khá quan trọng mà các bạn cần phải chuẩn bị kỹ. Các giáo sư thường hỏi các kiến thức rất cơ bản. Dưới đây là các chủ đề mà các giáo sư thường hỏi:
- Đại số tuyến tính: rank, inverse, det...
- Giải tích: taylor ...
- Xác suất thống kê: bayes rule, ...
- Image processing: fourier transform ... (kinh nghiệm bản thân, các giáo sư tại EU đặc biệt
thích hỏi về fourier transform)
- Machine learning: các thuật toán thường dùng như svm, k-mean...
- Data structure và algorithm.
- Kiến thức cơ bản Python.
Lưu ý, vì tôi xin học bổng PhD về mảng machine learning computer vision nên các câu hỏi chỉ xoay quanh kiến thức cho mảng này. Ngoài ra, các bạn nên nắm kỹ kiến thức chứ không phải học thuộc định nghĩa. Một ví dụ từ kinh nghiệm bản thân: giáo sư hỏi fourier transform là gì? fourier transform biến tín hiệu từ miền thời gian sang miền tần số. Đây là câu trả lời chính xác nhưng rất chung chung và đến đây có 2 trường hợp: (1) giáo sư sẽ hỏi: nhưng tôi muốn biết chính xác là fourier transform làm cái gì? (2) giáo sư sẽ hỏi: nếu có 1 tín hiệu từ miền thời gian biến đổi pha nhưng biên độ giữ nguyên thì sang miền tần số sẽ ra sao?
Style hỏi của các giáo sư thường có 2 styles: một là hỏi thẳng vào kiến thức (vd: cho tôi biết rank của 1 ma trận là gì?), hoặc cho 1 bài tập nhỏ và hỏi các câu hỏi dựa trên bài tập đó (vd:
tung đồng xu 3 lần, xác suất của...).
🖍5. Đọc hiểu bài báo: giáo sư sẽ chỉ định paper để các bạn đọc và trình bày lại cho giáo sư.
🖍6. Coding test: về phần coding test có 2 dạng:
- Giáo sư ra đề và bạn code thẳng trên google Docs. Đề có thể là bất kỳ thứ gì: svm, k-mean,
hoặc pca,...
- Giáo sư chỉ định dataset (public hoặc private) và task (thường là recognition, segmentation,...). Nhiệm vụ của bạn là code theo task đó và đạt kết quả cao, sau đó báo cáo lại giáo sư.
🖍7. Thái độ: thái độ ở đây là thái độ của bạn đối với việc học PhD. Phần này quan trọng không kém kiến thức. Giáo sư muốn biết bạn có nghiêm túc với việc học PhD không? Hầu như tất cả
các giáo sư tôi đã phỏng vấn đều hỏi tại sao học PhD và đánh giá qua câu trả lời. Bạn nên chuẩn bị câu trả lời thích hợp cho mình. Như đã nói ở phần chuẩn bị hồ sơ. Việc chuẩn bị SoP là lúc thích hợp nhất để bạn suy nghĩ câu trả lời cho mình.
🖍8. Chuẩn bị câu hỏi cho giáo sư: khi kết thúc phần phỏng vấn của mình giáo sư sẽ hỏi bạn có câu hỏi nào cho giáo sư không. Nếu bạn chưa có câu hỏi hợp lý thì cứ nói không có. Nhưng bạn có thể ghi điểm bằng cách hỏi rõ hơn về hướng nghiên cứu của giáo sư hoặc giáo sư suy nghĩ thế nào về hướng nghiên cứu của bạn (tất nhiên hướng của bạn cũng phải gần với hướng của giáo sư). Rồi sau đó dẫn dắt câu chuyện để thể hiện thái độ nghiêm túc của bạn trong việc học PhD.
🖍9. Giáo sư phỏng vấn cùng với một sinh viên khác hiện đang làm PhD trong lab: sinh viên này thường chỉ nghe và trả lời các câu hỏi personal của sinh viên như: stipend, lab environment...
------------------------------
Đợt này các bạn Schofan cũng đang rục rịch nhận được email mời phỏng vấn với thầy cô, giáo sư (ví dụ 1 bạn mentee HannahEd mới có interview với hai giáo sư bên Canada) hay phỏng vấn học bổng chính phủ (như Ireland Fellows Program). Để chuẩn bị thật tốt, cả nhà cùng note kinh nghiệm của một bạn được offer học bổng tại Mỹ ngành HOT Machine Learning, nếu cả nhà còn nhớ phần 1 bạn chia sẻ về các kênh học bổng ML và HannahEd cũng có cơ hội được hỗ trợ, review cho bạn hồ sơ đó <3.
<3 Like page, tag và share bạn bè nhé <3
#HannahEd #HannahEdPhd #sanhocbong #duhoc #scholarshipforVietnamesestudents #interviewstips
同時也有3部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本影片從 Fourier 級數開始講起,內容包含 Fourier 積分,最後以 Fourier 轉換作結 【加入會員】 歡迎加入張旭老師頻道會員 付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片 https://www.youtube.com/channel/UCxBv4eDVLoj...
「fourier transform」的推薦目錄:
- 關於fourier transform 在 Scholarship for Vietnamese students Facebook 的最讚貼文
- 關於fourier transform 在 河西羊的健聲房 Facebook 的最讚貼文
- 關於fourier transform 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
- 關於fourier transform 在 數學老師張旭 Youtube 的最佳解答
- 關於fourier transform 在 數學老師張旭 Youtube 的精選貼文
- 關於fourier transform 在 Science Experiments with Physics Engine Youtube 的精選貼文
- 關於fourier transform 在 Fourier Transforms (scipy.fft) 的評價
fourier transform 在 河西羊的健聲房 Facebook 的最讚貼文
圍在那幹嘛?
在調整聲譜分析(Spectrum analysis)的app設定!
對絕大多數人來說看見經快速傅立葉轉換(FFT,Fast Fourier Transform)後的聲譜是件非常新鮮的事,幾乎對所有人來說都是第一次。
對於這工具的使用,一開始有些遲疑,要如何用的好成為解說的幫助,而非反而變成複雜難以理解的專業壁壘,花了不少時間去想如何用的適當而精采。
兩年工作坊下來,這工具的使用也日益成熟,現在倒成了上午課程的重頭戲,把原本聽覺感受的聲音,變成能以視覺觀察的畫面。
好處在哪?
其一是用視覺會相對聽覺會更客觀,不會有太多偏好而形成的聽覺差異。其二,是對打破既有的氣息與共鳴傳統聲音教學觀點有很大的幫助。看著聲譜隨口腔的姿態改變,就改變了各頻率泛音的強弱增減,對建立全新聲音科學的概念幫助很大。
7/18在高雄有一場工作坊,歡迎對人聲專業知識有興趣的人來上課哦!
※一日工作坊(台北、高雄):https://www.cln.com.tw/school_openclass_info_165_.html
fourier transform 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
"แอ็ดส์เคอร์ ไดก์สตรา" ได้ให้ คำคมที่ลึกซึ้งกินใจ #โปรแกรมเมอร์ ว่า
“If debugging is the process of removing software bugs ,then programming must be the process of putting them in.”
แปลเป็นไทยได้ว่า
“ถ้าการดีบักคือ กระบวนการเอาบั๊กซอฟแวร์ออกไปละก็ …
เมื่อนั้นการเขียนโปรแกรมต้องเป็น กระบวนการใส่บั๊กเข้าไปแน่ ๆ”
++++รู้ไว้ใช่ว่า ใส่บ่าแบกหาม++++
ประวัติ Edsger Dijkstra (แอ็ดส์เคอร์ ไดก์สตรา)
เขาเป็นนักวิทยาศาสตร์คอมพิวเตอร์ชาวดัชต์
ที่สร้างคุณานุประโยชน์ แก่วงการคอมอย่างมาก
เกิดเมื่อค.ศ. 1930 และเสียชีวิตด้วยโรคมะเร็งเมื่อ 6 ส.ค. 2002
รวมอายุได้ 72 ปี
เขาจบดอกเตอร์ทางคณิตศาสตร์และฟิสิกส์ ที่ University of Amsterdam เมื่อปี 1959
ปี 1972 ได้รับรางวัล "ACM Turing Award"
และปี 1984 ได้เป็นศาสตราจารย์ที่ Uninversity of Texas at Austin
ผลงานของเขา ที่คนเรียนสายคอมทุกคน ต้องรู้จักคือ
“Dijkstra’s algorithm”
ตำราเรียนอาจแปลว่า "ขั้นตอนวิธีของไดก์สตรา" (คุ้น ๆ ใช่มั๊ยละ)
มันเป็นวิธีแก้ปัญหาเรื่อง shortest path หรือก็คือหาระยะทางสั้นที่สุด จากจุดหนึ่งไปยังจุดใด ๆ ในกราฟ นั่นเอง
(ถ้าไม่รู้จักแสดงว่าโดดเรียน และทำข้อสอบไม่ได้นะ)
ผลงานดังอีกชิ้น ที่เราต้องเคยเรียนคือ
การแก้ปัญหาการกินอาหารของนักปราชญ์
หรือชื่อภาษาอังกฤษคือ "dining philosophers problem"
+++ส่วนผลงานดังด้านอื่น ๆ+++
-เป็นหัวหน้าทีมคิดค้นระบบ OS ที่เรียกว่า “THE” Multiprogramming System
-คิดค้นหลักการ Semaphore
-เป็นผู้เขียนบทความ “Go To Statement Considered Harmfull” จนปลุกกระแสต่อต้านคำสั่ง Goto ในยุคนั้น
-เขียนหนังสือ “A Discipline of Programming” ซึ่งรวบรวม Algorithms ที่ตัวเขาเองคิดค้น
-แต่งหนังสือร่วมกับ C. A. R. Hoare Ole-Johan Dah ชื่อหนังสือคือ “Structured Programming”
นอกจากนี้แล้ว เขายังเป็นผู้บุกเบิกศาสตร์ทางคอมหลายเรื่อง ยิ่งคนจบคอมมา ล้วนเคยเรียน หรือเคยอ่านผ่านตามาทั้งสิ้น ได้แก่
Distributed Computing, Compiler Writing, Heuristics, stream, Computer Hardware Design, Dining Philosopher, Software Configuration Management, Sorting Algorithms, Fast Fourier Transform, Deadlock, Concurrent Programming, Garbage Collection, Memory Design, AI: Pattern Matching, Graph Theory, Scope of Variables, Transaction และอื่นๆ อีกมากกว่า 1,000 บทความ
อ่านเพิ่ม -> http://www.patanasongsivilai.com/…/การเขียนโปรแกรม-คือการใ…/
fourier transform 在 數學老師張旭 Youtube 的最佳解答
【摘要】
本影片從 Fourier 級數開始講起,內容包含 Fourier 積分,最後以 Fourier 轉換作結
【加入會員】
歡迎加入張旭老師頻道會員
付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片
https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【會員等級說明】
博士等級:75 元 / 月
- 支持我們拍攝更多教學影片
- 可在 YT 影片留言處或聊天室使用專屬貼圖
- 你的 YT 名稱前面會有專屬會員徽章
- 可觀看會員專屬影片 (張旭老師真實人生挑戰、許願池影片)
- 可加入張旭老師 YT 會員專屬 DC 群
碩士等級:300 元 / 月
- 享有博士等級所有福利
- 每個月可問 6 題高中或大學的數學問題 (沒問完可累積)
學士等級:750 元 / 月
- 享有博士等級所有福利
- 每個月可問 15 題高中或大學的數學問題 (沒問完可累積)
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額不可轉讓)
家長會等級:1600 元 / 月
- 享有博士等級所有福利
- 沒有解題服務,如需要,得另外購入點數換取服務
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額可轉讓)
- 可參與頻道經營方案討論
- 可免費獲得張旭老師實體產品
- 可以優惠價報名參加張旭老師所舉辦之活動
股東會等級:3200 元 / 月
- 享有家長會等級所有福利
- 一樣沒有解題服務,如需要,得另外購入點數換取服務
- 本頻道要募資時擁有優先入股權
- 可加入張旭老師商業結盟
- 可參加商業結盟餐會
- 繳滿六個月成為終生會員,之後可解除自動匯款
- 終生會員只需要餐會費用即可持續參加餐會
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
無
【講義】
無
【附註】
本系列影片僅限 YouTube 會員優先觀看
非會員僅開放「單數集」影片
若想看到所有許願池影片
請加入數學老師張旭 YouTube 會員
加入會員連結 👉 https://reurl.cc/Kj3x7m
【張旭的話】
你好,我是張旭老師
這是我為本頻道會員所專門拍攝的許願池影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學大學數學的同學們,謝謝
【學習地圖】
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 (https://youtu.be/SByv7fMtMTY)
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:重製中
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 (https://youtu.be/GZRWgcY5i6Y)
EP12:Fourier 級數與 Fourier 轉換 👈 目前在這裡
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 (https://youtu.be/9c-lCLV4F0M)
EP15:極限、微分和積分次序交換的條件 (https://youtu.be/QRkGLK7Iw4c)
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
持續更新中...
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#傅氏級數 #傅氏積分 #傅氏轉換
fourier transform 在 數學老師張旭 Youtube 的精選貼文
【摘要】
從拉氏 (Laplace) 轉換的定義開始,然後計算了幾個基本函數的拉氏轉換的結果,並條列了拉氏轉換的重要運算律 (如函數微分、積分或折積以後的轉換公式),到特殊函數 (如單位脈衝函數,Dirac function) 的拉氏轉換,最後以兩個拉氏轉換再解微分方程上的應用作結
【加入會員】
歡迎加入張旭老師頻道會員
付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片
https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【會員等級說明】
博士等級:75 元 / 月
- 支持我們拍攝更多教學影片
- 可在 YT 影片留言處或聊天室使用專屬貼圖
- 你的 YT 名稱前面會有專屬會員徽章
- 可觀看會員專屬影片 (張旭老師真實人生挑戰、許願池影片)
- 可加入張旭老師 YT 會員專屬 DC 群
碩士等級:300 元 / 月
- 享有博士等級所有福利
- 每個月可問 6 題高中或大學的數學問題 (沒問完可累積)
學士等級:750 元 / 月
- 享有博士等級所有福利
- 每個月可問 15 題高中或大學的數學問題 (沒問完可累積)
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額不可轉讓)
家長會等級:1600 元 / 月
- 享有博士等級所有福利
- 沒有解題服務,如需要,得另外購入點數換取服務
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額可轉讓)
- 可參與頻道經營方案討論
- 可免費獲得張旭老師實體產品
- 可以優惠價報名參加張旭老師所舉辦之活動
股東會等級:3200 元 / 月
- 享有家長會等級所有福利
- 一樣沒有解題服務,如需要,得另外購入點數換取服務
- 本頻道要募資時擁有優先入股權
- 可加入張旭老師商業結盟
- 可參加商業結盟餐會
- 繳滿六個月成為終生會員,之後可解除自動匯款
- 終生會員只需要餐會費用即可持續參加餐會
【勘誤】
2:15:00 分子算錯 是s^2+6s+9 by kuokuo kuo
有任何錯誤歡迎留言告知
【習題】
無
【講義】
無
【附註】
本系列影片僅限 YouTube 會員優先觀看
非會員僅開放「單數集」影片
若想看到所有許願池影片
請加入數學老師張旭 YouTube 會員
加入會員連結 👉 https://reurl.cc/Kj3x7m
【張旭的話】
你好,我是張旭老師
這是我為本頻道會員所專門拍攝的許願池影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學大學數學的同學們,謝謝
【學習地圖】
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 (https://youtu.be/SByv7fMtMTY)
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:重製中
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 👈 目前在這裡
EP12:Fourier 級數與 Fourier 轉換 (https://youtu.be/85q-2nInw7Y)
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 (https://youtu.be/9c-lCLV4F0M)
EP15:極限、微分和積分次序交換的條件 (https://youtu.be/QRkGLK7Iw4c)
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
持續更新中...
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#拉氏轉換 #拉氏反轉換 #解微分方程
fourier transform 在 Science Experiments with Physics Engine Youtube 的精選貼文
円板があれば何でも描ける、なんとなくフーリエ変換がわかる回。
参考資料:
How to create a new “person curve”?
https://mathematica.stackexchange.com/questions/17704/how-to-create-a-new-person-curve
「高校数学でわかるフーリエ変換」竹内淳 著
Twitter:
https://twitter.com/physics_engine0
裏チャンネル:
https://www.youtube.com/channel/UCVBWuZftk2Oq1CbzehHjT4g
#物理エンジンくん
fourier transform 在 Fourier Transforms (scipy.fft) 的推薦與評價
Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal from those components. ... <看更多>