[Sharing]
HỌC DATA SCIENCE NHƯ THẾ NÀO?
#datascience
Helu mấy em, dạo này có rất nhiều bạn sinh viên hỏi chị về định hướng theo 1 ngành siêu hot là Data Science đấy! Vậy ngồi xuống đây đọc một bài viết hay về nghề Data Science nhé. Đây là ngành nghề được dự đoán sẽ có nhu cầu cao nhất trong tương lai đó. Bài viết này sẽ đưa ra các bước và nguồn cho các bạn muốn học Data Science đó, đọc xem và share cho các bạn còn loay hoay nha!
___________________________________
I. Học lập trình:
Một Data Scientist (DStist) không thể không biết lập trình, dù không cần thiết phải giỏi như một lập trình viên nhưng phải đủ khả năng viết được những chương trình cơ bản. Từ khi nhập học tới giờ, từ một đứa mà kiến thức lập trình là con số 0 tròn trình, mình đã học qua R, Java, Python, SQL (kì tới sẽ có cả NoSQL nữa). Học tới đâu là sử dụng luôn tới đấy nên thường mình phải tự học thêm rất nhiều để có thể hiểu được logic và cú pháp của ngôn ngữ lập trình đó. Ngôn ngữ quan trọng nhất, phổ biến nhất dành cho DStist là Python với thư viện khổng lồ. Xếp sau Python là R, rất mạnh về phân tích thống kê. Năm ngoái mình được Khoa Toán thuê viết một App (ShinyApp) tương tác dành cho một dự án nghiên cứu của Bang sử dụng ngôn ngữ này.
Vậy học lập trình ở đâu?
https://www.tutorialspoint.com/
Trang này thì gi gỉ gì gi cái gì cũng có, thích học gì có ngay cái đó. Còn nhớ năm ngoái mình cực kỳ đuối khi các thầy bắt học thêm Java, với lý do rằng DStist thường hay phải làm việc trực tiếp với lập trình viên, vậy thì phải học để có thể trò chuyện với nhau được. Mình đã phải đọc thêm sách, đi học thêm phụ đạo, rồi lại đọc mòn mỏi trên trang này để theo kịp các bạn trên lớp. Kết quả là cuối kì, mình tự viết được cả trò chơi và thậm chí còn lập trình được công thức toán thống kê cho thư viện Java đấy.
2. https://codingbat.com/
Đây là nơi mình luyện viết code, từ những ứng dụng đơn giản nhất chỉ vài ba dòng. Trình độ của mình đã lên rất nhanh sau khi hoàn thành phân nửa số bài tập trên này.
3. https://www.datacamp.com/
Mình chưa sử dụng trang này bao giờ, nhưng được quảng cáo khá nhiều. Trên này có các khóa học miễn phí R và Python thiết kế riêng cho DS. Thích hợp cho những ai mới bắt đầu.
4. https://www.udemy.com/.../development/programming-languages/
5. https://www.codecademy.com/catalog/subject/all
Đây là hai trang do bạn bè mình giới thiệu. Có mấy bạn không đi học phụ đạo Java được đã trả tiền theo học trên này. Vì thường xuyên có giảm giá sâu nên khóa học không quá đắt đỏ. Và điểm lợi thế là sẽ có chứng nhận cuối khóa, có thể củng cố thêm cho hồ sơ xin học hoặc xin việc của bạn.
II. Học thống kê:
Đã làm việc với dữ liệu là phải hiểu lý thuyết thống kê, chí ít cũng phải biết tới những khái niệm cơ bản như lấy mẫu (sampling), trung bình (mean), trung vị (median), độ lệch chuẩn (standard deviation), hồi quy tuyến tính (linear regression),... Nếu muốn trở thành DStist thì còn phải biết tới kiến thức thống kê nâng cao, liên quan tới machine learning. Một điều tuyệt vời là những cuốn sách thống kê hay ho nhất, tổng hợp nhất lại miễn phí, nhằm đáp ứng nhu cầu học tập về dữ liệu ngày càng cao. Hai cuốn sách mà tất cả các giáo sư Khoa Toán của mình đều sử dụng là:
The Elements of Statistical Learning (Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, 2001)
Cuốn này hơn 700 trang, chia làm 18 chương, sử dụng R trong phân tích thống kê. Bản thân mình thấy sách quá hay, minh họa đầy đủ, giải thích kĩ càng, đọc tới đâu có thể copy code đến đấy để tự thử nghiệm. Dĩ nhiên bạn không cần phải đọc hết sách. Đụng tới khái niệm thống kê nào thì tra cứu tương ứng trong sách cũng được.
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
2. An Introduction to Statistical Learning: With Applications in R ( Trevor Hastie, Robert Tibshirani, Daniela Witten, Gareth James, 2013)
Cuốn này cũng hay, hơn 400 trang, chia làm 10 chương, cũng dùng R. Ai ngại đọc cuốn trên thì có thể bắt đầu với cuốn này.
https://www-bcf.usc.edu/.../ISL/ISLR%20First%20Printing.pdf
III. Học Data Science - Nâng cao:
Sau khi có chút kiến thức cơ bản về lập trình và thống kê rồi thì bạn có thể sử dụng các trang sau để tìm hiểu thêm về các mảng chính của DS như artificial intelligence, computer vision, machine learning, Big Data Analytics, Business Intelligence...
https://towardsdatascience.com/
Đây là trang tổng hợp cực kì nhiều bài viết chất lượng từ các giáo sư và chuyên gia trong ngành. Có rất nhiều bài hướng dẫn chi tiết từng bước cho trình độ beginner. Mình thường đọc trên trang này về machine learning và artificial intelligence (AI). Không chỉ có những phân tích rất cặn kẽ về mặt lý thuyết, nhiều bài viết còn cung cấp ví dụ minh họa và đính kèm cả code để bạn đọc tự thử nghiệm. Ví dụ bài viết sau về Deep Learning là của một giáo sư ở Barcelona, toàn bộ Code có trong Notebook trên Google Colab. Vì chạy trên Cloud nên bạn không cần cài đặt gì mà có thể lập tức chạy chương trình ngay được, cực kì phù hợp cho những ai muốn xem qua trước và không muốn mất công cài đặt này nọ.
https://towardsdatascience.com/deep-learning-for...
2. https://www.datascienceweekly.org/
Một bạn người Na Uy trên Tandem giới thiệu cho mình về trang này, bảo rằng đang tự học machine learning ở đây. Thế là mình cũng đăng ký nhận Newsletter từ mấy hôm trước. Mỗi tuần, mình nhận được một email tổng hợp các bài viết nổi bật trong ngành. Như vậy để mình luôn nắm bắt được những xu hướng mới nhất và cập nhật những tiến bộ công nghệ mới.
3. https://www.kaggle.com/
Một đồng nghiệp người Ấn Độ chỉ cho mình trang này quá hay luôn. Đây là nơi bạn học hỏi bằng cách thực hành qua các dự án, các cuộc thi và thử thách quốc tế. Các công ty, tổ chức treo giải thưởng có khi lên tới cả 100,000$ cho đội nào chiến thắng. Chẳng hạn hiện giờ có 20 cuộc thi đấu song song, và đã có hàng ngàn đội đăng kí tham gia. Trên này cũng có các micro-courses hoàn toàn miễn phí từ Python cho tới Deep Learning dành cho beginner.
https://www.kaggle.com/learn/overview
4. https://www.coursera.org/browse/data-science
Và cuối cùng, dĩ nhiên là trên coursera cũng có khóa học miễn phí dành cho DS. Khi nào có thời gian, bạn thử đăng ký xem sao.
Trên đây là những hướng dẫn chung dành cho những ai muốn tìm hiểu về Data Science và học những kĩ năng cơ bản trước. Hi vọng giúp được các bạn đang quan tâm. Mình sẽ tiếp tục cập nhật thêm nhé.
Blog Mai Knows người chị thân thiết của Founder Hoa Dinh ở Đức
https://www.facebook.com/maiknowsnow/
Link tham khảo về lương của DStist:
https://www.burtchworks.com/.../2018-data-scientist.../
----
Join các kênh khác của HannahEd:
- Job Hunters & Career Builders - HannahEd
- Học bổng ngắn hạn, trao đổi, tình nguyện - HannahEd
- English Club HEC
- Scholarship Hunters
- Web/tiktok/insta: hannahed.co
- Youtube: HannahEd
🌍📚Những #Schofan quyết tâm và muốn chuẩn bị kĩ cho nhiều học bổng từ giờ thì mau mau đăng kí lớp tìm và apply học bổng #HannahEd đã có lịch các lớp tháng 11, 12 và chương trình Mentor, Review hồ sơ, Tập phỏng vấn.
Link này để nhận thêm thông tin hoặc email [email protected] nhé:
http://tiny.cc/HannahEdClassInfo
https://hannahed.co/lop-tim-va-nop-hoc-bong/
❤ Like và share nếu các em thấy thông tin có ích nhé ❤
#HannahEd #duhoc #hocbong #sanhocbong #scholarshipforVietnamesestudents
同時也有4部Youtube影片,追蹤數超過12萬的網紅prasertcbs,也在其Youtube影片中提到,เนื้อหาแสดงการใช้งาน repeat loop โดยการเปรียบเทียบกับ for loop และ while loop พร้อมกับตัวอย่างที่แสดงให้เห็นถึงว่าเมื่อไรควรจะใช้ repeat 1) repeat loo...
「r programming for data science」的推薦目錄:
- 關於r programming for data science 在 Scholarship for Vietnamese students Facebook 的最讚貼文
- 關於r programming for data science 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳解答
- 關於r programming for data science 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
- 關於r programming for data science 在 prasertcbs Youtube 的最佳貼文
- 關於r programming for data science 在 prasertcbs Youtube 的最佳貼文
- 關於r programming for data science 在 prasertcbs Youtube 的最讚貼文
- 關於r programming for data science 在 rdpeng/rprogdatascience - GitHub 的評價
- 關於r programming for data science 在 Importance of R Programming for Learning Data Science 的評價
r programming for data science 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳解答
ขออัพเดตรายชื่อหนังสือและวีดีโอสอน
AI, Machine learning และ Data science สอนเป็นภาษาไทยฟรี ไม่เสียค่าใช้จ่าย ยกเว้นค่าเน็ตและค่าไฟนะครับ
====อันนี้เป็นคลิปวีดีโอสอน=====
🎥 1) สอนเรื่อง “Big Data” สำหรับงาน Data Science (วิทยาศาสตร์ด้านข้อมูล) .สอนโดย คณาจารย์คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เช่น ศ.ดร. ประภาส จงสถิตย์วัฒนา และ รศ.ดร. อติวงศ์ สุชาโต เป็นต้น ดูผ่าน iTune
https://itunes.apple.com/th/itunes-u/big-data/id1109952360…
🎥 2) Machine Learning ผู้สอนโดย Dr. Warasinee Chaisangmongkon
- Machine Learning Workshop (part 1)
https://www.facebook.com/bigdataexperience/videos/1569784483324081/
- [Machine Learning Workshop (Part 2)
https://www.facebook.com/bigdataexperience/videos/1569800019989194/
- Machine Learning Workshop (Part 3)
https://www.facebook.com/bigdataexperience/videos/1569814079987788/
- [Machine Learning Workshop (Part 4)
https://www.facebook.com/bigdataexperience/videos/1569818656653997/
- ไสลด์ประกอบการบรรยายเป็น PDF
https://drive.google.com/…/fol…/0B_K_-nCSCP1Dcjlua19VUlFRNG8
🎥 3) อธิบาย Machine Learning สำหรับผู้เริ่มต้น (บรรยายไทยให้อ่าน) http://ta.virot.me/fb-ai-explainer/
🎥 4) คอร์สเรียนจากจุฬา ชื่อ Pattern Recognition (ก็คือ Machine learning นั่นแหละ) โดยอาจารย์ Ekapol Chuangsuwanich
https://www.youtube.com/playlist…
🎥 5) 2110594 NLP L1 Introduction โดยอาจารย์ Ekapol Chuangsuwanich
https://youtu.be/yTYo6XJjMzY…
(Course on github https://github.com/ekapolc/nlp_course)
🎥 6) วิชา NLP เป็นหนึ่งในสาขาย่อยใน AI ขาดสาขานี้ไป เราก็ไม่มี chatbot เลยนะ สอนโดยอาจารย์คณะวิศวะจุฬา
https://www.youtube.com/playlist…
(Course on github https://github.com/ekapolc/nlp_course)
🎥 7) คอร์ส AI ของอาจารย์ วรเศรษฐ สุวรรณิก
https://www.youtube.com/watch…
🎥 8) deep learning และ Tensorflow (ต้องลงทะเบียนก่อง) สอนโดยอาจารย์ สรวิชญ์ แสงเขียวงาม และ ดร.วิโรจน์ จิรพัฒนกุล
https://www.skooldio.com
🎥 10) Chanel youtube ของ Algo Addict
https://www.youtube.com/channel/UCoA-Dyu0X02M12EBwVZ9_Bg
🎥 11) Python for Data Science จากเพจ AlgoAddict - Trading with Intelligence
https://www.facebook.com/…/a.16874542048…/2049490818622583/…
🎥 12) Deep Learning Workshop โดย NECTEC TechTalk
https://www.youtube.com/watch?v=CB7DKG7bPzo
🎥 13) คอร์สเรียนฟรีสำหรับงาน datascience มีสอนภาษา SQL, ภาษา R ของคุณ Kasidis S. (Toy)
https://datarockie.teachable.com/
🎥 14) การเขียนโปรแกรมเพื่อการประมวลผลภาษาธรรมชาติ (NLP: natural language processing)
https://attapol.github.io/programming/
https://www.youtube.com/c…/UCgNWcPsv0yC94HHVXLjyJ5Q/featured
โดย อ. ดร.อรรถพล ธำรงรัตนฤทธิ์ ภาควิชาภาษาศาสตร์ คณะอักษรศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
🎥 15) ภาษาศาสตร์คอมพิวเตอร์ (Computational Linguistics)
https://attapol.github.io/compling
โดย อ. ดร.อรรถพล ธำรงรัตนฤทธิ์ ภาควิชาภาษาศาสตร์ คณะอักษรศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
=====ต่อมาเป็นหนังสือ=======
📖 1) คู่มือการใช้งาน Weka Explorer (เอาไว้ใช้ทำ ( Data Mining ) เบื้องต้น เขียนโดย ดร. เอกสิทธิ์ พัชรวงศ์ศักดา
http://dataminingtrend.com/2014/free-weka-book/
📖 2) ตำราเรียน ปัญญาประดิษฐ์ เขียนโดยอาจารย์ บุญเสริม กิจศิริกุล
https://www.cp.eng.chula.ac.th/~boonse…/teaching/ai1.0.2.pdf
📖 3) หนังสือ AI ของแอดมินเอง เกือบลืมแชร์ (ยังไม่เสร็จดี)
http://www.ebooks.in.th/…/AI_เขย่าโลก_(เลคเชอร์_วิชา_Machi…/
📖 4) หนังสือ R for Data Science 2019 ของเพจ DataRockie (มาใหม่ล่าสุด)
https://drive.google.com/…/1VYL0E6TNb1zru-NrCYfySthhA9g0gqt6
---------
เนื่องจากศาสตร์ด้านนี้ภาษาที่นิยมตอนนี้มีอยู่ 2 ตัวคือ Python แล้วอีกตัวคือ R เลยมีลายแทงให้เรียนฟรี
==== สอนภาษา R =====
💻 1) สอนภาษา R สอนโดย รศ.ดร.ประเสริฐ คณาวัฒนไชย
- https://www.youtube.com/watch?
v=UaEtZ5XzVeE&list=PLoTScYm9O0GGSiUGzdWbjxIkZqEO-O6qZ
- https://www.youtube.com/watch…
- https://www.youtube.com/watch…
==== สอนภาษา Python =====
💻 1) ภาษา Python โดย SIPA https://www.youtube.com/watch…
💻 2) บทเรียนวิชาการเขียนโปรแกรมสำหรับนิสิต ปี 1 คณะวิศวกรรมศาสตร์ ภาคปลาย ปีการศึกษา 2558 ใช้ Python เป็นพื้นฐาน รหัสวิชา 2110101 Computer Programming (2558-2) สอนโดยดร. สมชาย ประสิทธิ์จูตระกูล จากจุฬาฯ
https://www.youtube.com/playlist…
💻 3) สอนพื้นฐานการเขียนโปรแกรมด้วยภาษาไพธอน (Python 3) โดย รศ. ดร. ประเสริฐ คณาวัฒนไชย จากจุฬาฯ
https://www.youtube.com/playlist…
💻 4) Python โดย Clique Club - ชมรมคลิก ของจุฬา
https://www.youtube.com/playlist…
💻 5) Python เบื้องต้นแบบรวบรัด 30 นาที
https://www.youtube.com/watch?v=UXJ_iogbivw
💻 6) Python programming จากเพจ AlgoAddict - Trading with Intelligence
https://www.facebook.com/…/a.16874542048…/2022801434624855/…
==== หนังสือภาษา Python =====
📚 1) หนังสือเชียวชาญการเขียนโปรแกรมด้วยไพธอน (Python) ของอาจารย์ ผศ. สุชาติ คุ้มมะณี - ขอแนะนำเล่มนี้เลย
https://isan.msu.ac.th/…/Py…/ProgrammingExpertwithPython.pdf
📚 2) Python ๑๐๑ หนังสือสอนเขียนโปรแกรมภาษา Python ใช้ประกอบการเรียนวิชา 2110101 Computer Programming ของวิศวกรรมคอมพิวเตอร์ จุฬา เขียนโดยอาจารย์ กิตติภณ พละการ, กิตติภพ พละการ, สมชาย ประสิทธิ์จูตระกูล และ สุกรี สินธุภิญโญ
http://www.cp.eng.chula.ac.th/books/python101
==== เว็บไซต์ ======
1) https://phyblas.hinaboshi.com/ : เว็บนี้น่าจะเป็นเว็บที่รวบรวมเนื้อหา Python, Machine learning , Neural network ที่มีเนื้อหาเป็นภาษาไทยมากสุด ละเอียดสุดแล้วละครับ
2) เนื้อหา machine learning พ่วงด้วย deep learning ของคุณ Peerat Limkonchotiwat มีทั้งหมด 12 parts ครับ
https://medium.com/…/เริ่มเรียน-machine-learning-0-100-intr…
-----ใครอยากแนะนำเพิ่มก็ได้
ถ้ามีเพิ่มก็จะอัพเดตใหม่เรื่อยๆ
ทุกอย่างผมรวบรวมไว้ที่นี้นะครับ
-----
https://github.com/adminho/learning-it/
.
เขียนโดยโปรแกรมเมอร์ไทย thai programmer
r programming for data science 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的精選貼文
ในวิชา "วิทยาการคำนวณ" ระดับชั้น ม. 5
ได้ดึงวิชา data science (วิทยาศาสตร์ข้อมูล)
มาปูพื้นฐานให้เด็กๆ ได้เรียนกันแล้ว นับว่าเป็นโชคดี
เพราะวิชาพวกนี้เป็นของสูง กว่าจะสัมผัสก็คงตอนป.ตรี โท เอก
...Continue ReadingIn the subject of ′′ Calculation Theology ′′ class. 5
Pulled data science (data science)
Let's master the foundation for kids to learn. It's considered lucky.
Because these subjects are high to touch. It's probably in the middle of the year. Tri To Aek
Which I will review the content to read roughly. The content is divided into 4 chapters.
.
👉 ++++ Chapter 1-Information is valuable +++++
.
Data science in the textbook. Used by Thai name as ′′ Information Science ′′
This chapter will mention Big Data or big data with lots of valuable information.
And so much role in this 4.0 s both public and private sector.
.
If you can't imagine when you played Google search network, you'll find a lot of information that you can use in our business. This is why data science plays a very important role.
.
It's not surprising that it makes the Data Scientist s' career (British name data scientist) play the most important role and charming and interesting profession of the 21th century.
.
Data science, if in the book, he defines it
′′ Study of the process, method or technique to process enormous amounts of data to process to obtain knowledge, understand phenomena, or interpret prediction or prediction, find out patterns or trends from information.
and can be analysed to advise the right choice or take decision for maximum benefit
.
For Data science work, he will have the following steps.
- Questioning my own interest.
- Collect information.
- Data Survey
- Data Analysis (analyze the data)
- Communication and Results Visualization (Communicate and visualize the results)
.
🤔 Also he talks about design thinking... but what is it?
Must say the job of a data scientist
It doesn't end just taking the data we analyzed.
Let's show people how to understand.
.
The application design process is still required.
To use data from our analytics
The word design thinking is the idea. The more good designer it is.
Which Data Scientists Should Have To Design Final Applications
Will meet user demand
.
👉 ++++ Chapter 2 Collection and Exploration +++++
.
This chapter is just going to base.
2.1 Collection of data
In this chapter, I will talk about information that is a virtual thing.
We need to use this internet.
2.2 Data preparation (data preparation)
Content will be available.
- Data Cleaning (data cleansing)
- Data Transformation (data transformation)
In the university. 5 is not much but if in college level, you will find advanced technique like PCA.
- Info Link (combining data)
2.3 Data Exploration (data exploration)
Speaking of using graphs, let's explore the information e
Histogram graph. Box plot diagram (box plot). Distributed diagram (scatter plot)
With an example of programming, pulls out the plot to graph from csv (or xls) file.
2.4 Personal Information
For this topic, if a data scientist is implementing personal data, it must be kept secret.
.
Where the issues of personal information are now available. Personal Data Protection is Done
.
.
👉 ++++ Chapter 3 Data Analysis ++++
.
Divided into 2 parts:
.
3.1 descriptive analysis (descriptive analytics)
Analyzing using the numbers we've studied since
- Proportion or percentage
- Medium measurement of data, average, popular base.
Correlation (Correlation) relationship with programming is easy.
.
.
3.2 predictive analysis (predictive analytics)
.
- numeric prediction is discussed. (numeric prediction)
- Speaking of technique linear regression, a straight line equation that will predict future information.
Including sum of squared errors
Let's see if the straight line graph is fit with the information. (with programming samples)
- Finally mentioned K-NN (K-Nearest Neighbors: K-NN) is the closest way to finding K-N-Neighborhood for classification (Category)
*** Note *****
linear regression กับ K-NN
This is also an algorithm. One of the machine learning (machine learning, one branch of AI)
Kids in the middle of the day, I get to study.
.
.
👉 +++ Chapter 4 Making information pictured and communicating with information +++
.
This chapter doesn't matter much. Think about the scientist after analyzing what data is done. The end is showing it to other people by doing data visualization. (Better summoning)
.
In contents, it's for example using a stick chart, line chart, circular chart, distribution plan.
.
The last thing I can't do is tell a story from information (data story telling) with a message. Be careful when you present information.
.
.
.
*** this note ***
😗 Program language which textbooks mentioned and for example.
It's also python and R language
.
For R language, many people may not be familiar.
The IT graduate may be more familiar with Python.
But anyone from the record line will surely be familiar.
Because R language is very popular in statistical line
And it can be used in data science. Easy and popular. Python
.
But if people from data science move to another line of AI
It's deep learning (deep learning)
Python will be popular with eating.
.
.
#########
😓 Ending. Even I wrote a review myself, I still feel that.
- The university. 5 is it going to be hard? Can a child imagine? What did she do?
- Or was it right that I packed this course into Big Data era?
You can comment.
.
But for sure, both parents and teachers are tired.
Because it's a new content. It's real.
Keep fighting. Thai kids 4.0
.
Note in the review section of the university's textbook. 4 There will be 3 chapters. Read at.
https://www.facebook.com/programmerthai/photos/a.1406027003020480/2403432436613260/?type=3&theater
.
++++++++++++++++++++
Before leaving, let's ask for publicity.
++++++++++++++++++++
Recommend the book ′′ Artificial Intelligence (AI) is not difficult ′′
It can be understood by the number. End of book 1 (Thai language content)
Best seller ranked
In the MEB computer book category.
.
The contents will describe Artificial Intelligence (A) in view of the number. The end.
Without a code of dizzy
With colorful illustrations to see, easy to read.
.
If you are interested, you can order.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
Personal like the book. You can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry, paper book. I don't have it yet. Sorry.
.
✍ Written by Thai programmer thai progammerTranslated
r programming for data science 在 prasertcbs Youtube 的最佳貼文
เนื้อหาแสดงการใช้งาน repeat loop โดยการเปรียบเทียบกับ for loop และ while loop พร้อมกับตัวอย่างที่แสดงให้เห็นถึงว่าเมื่อไรควรจะใช้ repeat
1) repeat loop ใน R จะเหมาะสำหรับ loop ที่มีการทำชุดคำสั่งก่อนที่จะมีการตรวจสอบเงื่อนไข ซึ่งจะต่างกับ while ตรงที่ while จะทำการตรวจสอบเงื่อนไขก่อนที่จะทำงานคำสั่งที่อยู่ใน while
2) คำสั่ง repeat loop จะเหมือนกับ do { ... } while (condition) ใน C และ Java
ดาวน์โหลดไฟล์ตัวอย่างได้ที่ https://goo.gl/vENBm9
เชิญสมัครเป็นสมาชิกของช่องนี้ได้ที่ ► https://www.youtube.com/subscription_center?add_user=prasertcbs
สอนการเขียนโปรแกรมด้วยภาษา R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GF6qjrRuZFSHdnBXD2KVICp
สอนการใช้โปรแกรม R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGSiUGzdWbjxIkZqEO-O6qZ
สอน R สำหรับ Data Science ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGat89RT9NMjW7sqFz84XSk
สอนการสร้างกราฟด้วยโปรแกรม R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEvw9bN_Q8nRdDUPyaSymqM
การสร้างกราฟด้วย ggplot2 ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFEu7flht1Fv_gsT2mizgPW
สอนการใช้ dplyr package ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEsJv4E4QmrBkdyax2IgRQG
สอนการใช้ tidyr package ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFL9f4LpDa0zrh-rqzF3xdN
#prasertcbs #prasertcbs_R #prasertcbs_DataScience
r programming for data science 在 prasertcbs Youtube 的最佳貼文
แสดงการใช้งาน while loop ในการทำงานชุดคำสั่งซ้ำ ๆ ตราบที่เงื่อนไขยังเป็นจริง
เมื่อไรควรจะใช้ for loop หรือ while loop
ดาวน์โหลดไฟล์ตัวอย่างได้ที่ https://goo.gl/LThGCj
เชิญสมัครเป็นสมาชิกของช่องนี้ได้ที่ ► https://www.youtube.com/subscription_center?add_user=prasertcbs
สอนการเขียนโปรแกรมด้วยภาษา R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GF6qjrRuZFSHdnBXD2KVICp
สอนการใช้โปรแกรม R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGSiUGzdWbjxIkZqEO-O6qZ
สอน R สำหรับ Data Science ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGat89RT9NMjW7sqFz84XSk
สอนการสร้างกราฟด้วยโปรแกรม R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEvw9bN_Q8nRdDUPyaSymqM
การสร้างกราฟด้วย ggplot2 ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFEu7flht1Fv_gsT2mizgPW
สอนการใช้ dplyr package ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEsJv4E4QmrBkdyax2IgRQG
สอนการใช้ tidyr package ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFL9f4LpDa0zrh-rqzF3xdN
#prasertcbs #prasertcbs_R #prasertcbs_DataScience
r programming for data science 在 prasertcbs Youtube 的最讚貼文
เรียนรู้เทคนิคการเขียน loop ที่ซ้อนอยู่ใน loop อื่น
แสดงตัวอย่าง 1) วิธีการเขียนสูตรคูณ 2) การสร้างสำรับไพ่ รวมถึงการใส่ตัวอักษรพิเศษโดยการระบุรหัส Unicode
ดาวน์โหลดไฟล์ตัวอย่างได้ที่ https://goo.gl/Nxhd6i
เชิญสมัครเป็นสมาชิกของช่องนี้ได้ที่ ► https://www.youtube.com/subscription_center?add_user=prasertcbs
สอนการเขียนโปรแกรมด้วยภาษา R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GF6qjrRuZFSHdnBXD2KVICp
สอนการใช้โปรแกรม R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGSiUGzdWbjxIkZqEO-O6qZ
สอน R สำหรับ Data Science ► https://www.youtube.com/playlist?list=PLoTScYm9O0GGat89RT9NMjW7sqFz84XSk
สอนการสร้างกราฟด้วยโปรแกรม R เบื้องต้น ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEvw9bN_Q8nRdDUPyaSymqM
การสร้างกราฟด้วย ggplot2 ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFEu7flht1Fv_gsT2mizgPW
สอนการใช้ dplyr package ► https://www.youtube.com/playlist?list=PLoTScYm9O0GEsJv4E4QmrBkdyax2IgRQG
สอนการใช้ tidyr package ► https://www.youtube.com/playlist?list=PLoTScYm9O0GFL9f4LpDa0zrh-rqzF3xdN
#prasertcbs #prasertcbs_R #prasertcbs_DataScience
r programming for data science 在 Importance of R Programming for Learning Data Science 的推薦與評價
Explore various reasons to learn R Programming for mastering Data Science field. Get the most suitable answer to the question - Why Learn R Programming Language ... ... <看更多>
r programming for data science 在 rdpeng/rprogdatascience - GitHub 的推薦與評價
R Programming for Data Science. Roger D. Peng. This repository contains the files for the book R Programming for Data Science, as it is built on ... ... <看更多>