【藥事知多D】一物兩用:維生素A酸
說到維生素A酸(Retinoic Acid)(俗稱「A酸」),很多人便會聯想到暗瘡藥,例如維A酸(Tretinoin)、異維A酸(Isotretinoin)。
對,A酸這類藥的其中一個用途,便是暗瘡。
不說不知道,A酸這類藥原來還有一種鮮為人知的用途……
這便是……
停!在揭曉答案前,藥罐子首先不妨在這裡簡單分享一下A酸的作用原理吧!
A酸這門派主要在跟維生素A酸受體(Retinoic Acid Receptors, RARs)、維生素A酸X受體(Retinoid X Receptors, RXRs)這兩類受體結合,然後這些受體便會充當轉錄因子(Transcription Factor),調控基因的轉錄(Transcription),從而控制細胞凋亡(Apoptosis)、細胞分化(Cell Differentiation)。[1]
其實這個作用原理便是一個提示了。
這話怎麼解?
因為這門派能夠影響細胞分化、細胞凋亡這兩個過程,所以有時候還可以用來治療癌症。
對,其中一些A酸還可以是一種化療藥,透過抑制細胞分化,干擾細胞周期,抑制癌細胞增殖或者誘發細胞凋亡,誘發體內癌細胞啟動細胞凋亡,導致癌細胞自動消失,達到殺滅癌細胞的效果。
這方面,常見的例子分別是Alitretinoin、Bexarotene。
一、Alitretinoin
在藥理上,Alitretinoin是一種「百搭」致效劑,簡單說,便是一條百合匙,同時能夠跟各種不同的維生素A酸受體、維生素A酸X受體結合,治療癌症。
暫時還是不太清楚具體的作用原理,只是知道Alitretinoin能夠治療卡波西氏肉瘤(Kaposi's Sarcoma)這種癌症。[1]
二、Bexarotene
在藥理上,Bexarotene是一種選擇性維生素A酸X受體致效劑,顧名思義,主要跟維生素A酸X受體結合,治療癌症。
暫時還是不太清楚具體的作用原理,只是知道Bexarotene能夠治療皮膚T細胞淋巴瘤(Cutaneous T-cell Lymphoma)這種癌症。[2]
最後因為A酸這門派能夠控制細胞分化、細胞凋亡,所以還可能會影響體內其他細胞分裂速度較快的正常細胞,例如胚胎(Embryo),從而能夠干預胚胎進行正常的細胞分裂,干擾胎兒的正常發展。
這就是說,A酸大多擁有致畸性(Teratogenicity),從而可能會增加孕婦誕下畸胎的風險。
(如欲了解更多用藥資訊,歡迎看看「小小藥罐子」網誌。)
💊💊💊💊💊💊💊
BLOG➡️http://pegashadraymak.blogspot.com/
IG➡️https://www.instagram.com/pegashadraymak/
YT➡️https://www.youtube.com/channel/UCQOMojMd6q7XnESMWwldPhQ
📕📕📕📕📕📕📕
著作➡️藥事知多D、用藥知多D、藥房事件簿、家居用藥攻略(各大書店有售)
Reference:
1. Sporn MB, Lippman SM. Chemoprevention of cancer. In: Kufe DW, Pollock PE, Weichselbaum RR, et al, eds. Cancer Medicine, 6th ed. Hamilton, Ontario, BC Decker, 2003:414-422.
2. Duvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-state cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19:2456-2471.
同時也有1部Youtube影片,追蹤數超過14萬的網紅Mars Hartdegen,也在其Youtube影片中提到,Tàu SP1 xuất phất từ Ga Hà Nội lức 21:10 VNR Đường Sắt Việt Nam ?? This is a public railway station....
transcription factor 在 Micheal Lin的碎碎念 Facebook 的精選貼文
#生醫碎碎念 #訊息傳遞路徑 #MAPK_pathway #
【MAPK 信息通路的 3D 動畫】
我們身體裡的細胞除了維持內在環境的平衡,也和外界刺激有頻繁的互動;這些互動常常是由荷爾蒙、細胞外基質、或是神經傳導物質與細胞上的受體結合,產生一整串複雜的生化反應,最後改變細胞的行為——「細胞信息傳遞」是生理和藥理的基礎,大家或多或少都在課本上讀過,但是將一整條信息通路畫成精彩又真實的 3D 動畫,你看過嗎?
MAPK (mitogen-activated protein kinase),中文譯名為「絲裂原活化蛋白激酶」,掌管細胞裡多種基本生物程序,對於細胞增生、分化、移動、存活或凋亡特別重要,因此從事癌症研究的朋友都會對這一類的信息通路特別熟!
這個動畫中描繪的表皮生長因子(EGF, epidermal growth factor)通路,是最典型的受體酪胺酸激酶(receptor tyrosine kinase)和 MAPK 通路之一:
小型蛋白 EGF 是刺激細胞存活和生長的因子,它在細胞外液遊蕩,找到了並結合自己最喜歡的受體:表皮生長因子受體(EGFR)。這個受體有一隻滑稽的腳腳,原來是受體酪胺酸激酶這個家族的特徵,有激酶的功能;它被 EGF 刺激到之後,與另外一個受體酪胺酸激酶 HER2 形成二聚體,兩個受體比雙胞胎更有默契、感情更好,兩隻腳腳晃來晃去之間,運用自己的激酶功能幫對方貼上磷酸標籤,這時 MAPK 通路的分子派對才剛剛開始!
這些閃亮亮的磷酸吸引了一群蛋白質好友來排隊:首先報到的 GRB2 把來自細胞外的信息傳給細胞內的可溶性蛋白們,例如 SOS。SOS 很花心,輪流和很多個小 GTP 酶蛋白 Ras 跳舞,讓信號被放大、擴散,跳著舞的 Ras 精神振奮,將 GDP 換成高能量的 GTP,一路沿著細胞膜離原來的受體越跳越遠。
Raf 看到了跳舞的 Ras 也很想加入,但是它的身邊有兩個 14-3-3 像嚴格的父母一樣死死地盯著、壓著自己(14-3-3 是我見過名字最奇怪的蛋白質之一,居然是它在色譜層析的溶析部份和在凝膠電泳裡移動的位置,會不會取得太隨便了點?)。
好不容易甩掉 14-3-3 的 Raf,終於可以一展身手,改變自己的形狀與 Ras 結合,很多對 Ras-Raf 聚在舞池當中放閃,吸引其他蛋白質的注意;但是只甩掉 14-3-3 還有與 Ras 結合是不足以激活 Raf 的,因此 Raf 的好朋友 SRC 遞給它一個磷酸,這個磷酸化比能量飲料還有效,興奮的 Raf 將信息傳給了更多細胞內的蛋白質,例如 MEK 和 ERK(這些蛋白質之間的互動都有各種熱心的支架蛋白【scaffold proteins】幫忙拉進彼此距離、增加效率)。
不同於以上的其他蛋白,ERK 有一個重要的使命,被激活的 ERK 獨自踏上了細胞核之旅,路過細胞骨架、穿越形狀詭異的核孔門關,直到把信息傳給住在細胞核內的 MYC 才算完成了它的任務。MYC 是一個很厲害的轉錄因子(transcription factor),負責轉錄多達 15% 的基因!原來 ERK 傳遞給 MYC 的是一面免死金牌,使它免於被蛋白酶體(proteasomes)像碎紙機一樣快速分解消化掉。
MYC 與好基友 MAX 形成雙聚體,成剪刀形坐在特定的 DNA 序列上,它們的工作是召喚組蛋白乙醯化酶(histone acetyltransferase),在組蛋白上加上乙醯;因為 DNA 本身就帶有負電荷,也帶負電的乙醯使 DNA 與組蛋白分離,讓細胞核內的轉錄分子機器可以接近 DNA、開始表現這些基因。MYC-MAX 還有另外一招可以影響 DNA 的表現:和構造相似的 MAD-MAX 雙聚體結合,形成雙雙聚體,交叉聯結兩段 DNA。
透過這些非常複雜的細胞信息傳遞通路,小小的細胞外蛋白質 EGF 就足以啟動一整個系統的分子機器,把細胞搞得很忙,改變了整個細胞的基因表現模式,進而調節細胞的生長和行為。這條信息通路出問題可能會導致細胞異常增生,也就是癌症,難怪有史以來 MAPK 通路一直是癌症治療和藥物研發的研究重點!
現在可以觀賞這麼精美的動畫學生物學真是幸福,比死背課本上描述細胞信息傳遞的枯燥文字例如 Gs -> adenylyl cyclase -> cAMP -> PKA -> CREB 生動有趣多了,也更容易記住,真希望以前修生化和藥理學時,所有主要的信息通道都有這樣的動畫!
在修神經生理和藥理學時,我初嚐細胞信息傳遞的複雜,複雜到一位神經生理學教授說簡直是「惡夢的網路(web of nightmare)」,我問藥理學教授 Dr. Dana Selley:「細胞隨時都接收到一大堆不同的信號分子,細胞內的信息傳遞系統又那麼複雜,細胞怎麼不會搞糊塗了呢?」
Dr. Dana Selley 笑著回答:「會呀,那就叫病理現象(pathology)!」
【MAPK 信息通路的 3D 動畫】
我們身體裡的細胞除了維持內在環境的平衡,也和外界刺激有頻繁的互動;這些互動常常是由荷爾蒙、細胞外基質、或是神經傳導物質與細胞上的受體結合,產生一整串複雜的生化反應,最後改變細胞的行為——「細胞信息傳遞」是生理和藥理的基礎,大家或多或少都在課本上讀過,但是將一整條信息通路畫成精彩又真實的 3D 動畫,你看過嗎?
MAPK (mitogen-activated protein kinase),中文譯名為「絲裂原活化蛋白激酶」,掌管細胞裡多種基本生物程序,對於細胞增生、分化、移動、存活或凋亡特別重要,因此從事癌症研究的朋友都會對這一類的信息通路特別熟!
這個動畫中描繪的表皮生長因子(EGF, epidermal growth factor)通路,是最典型的受體酪胺酸激酶(receptor tyrosine kinase)和 MAPK 通路之一:
小型蛋白 EGF 是刺激細胞存活和生長的因子,它在細胞外液遊蕩,找到了並結合自己最喜歡的受體:表皮生長因子受體(EGFR)。這個受體有一隻滑稽的腳腳,原來是受體酪胺酸激酶這個家族的特徵,有激酶的功能;它被 EGF 刺激到之後,與另外一個受體酪胺酸激酶 HER2 形成二聚體,兩個受體比雙胞胎更有默契、感情更好,兩隻腳腳晃來晃去之間,運用自己的激酶功能幫對方貼上磷酸標籤,這時 MAPK 通路的分子派對才剛剛開始!
這些閃亮亮的磷酸吸引了一群蛋白質好友來排隊:首先報到的 GRB2 把來自細胞外的信息傳給細胞內的可溶性蛋白們,例如 SOS。SOS 很花心,輪流和很多個小 GTP 酶蛋白 Ras 跳舞,讓信號被放大、擴散,跳著舞的 Ras 精神振奮,將 GDP 換成高能量的 GTP,一路沿著細胞膜離原來的受體越跳越遠。
Raf 看到了跳舞的 Ras 也很想加入,但是它的身邊有兩個 14-3-3 像嚴格的父母一樣死死地盯著、壓著自己(14-3-3 是我見過名字最奇怪的蛋白質之一,居然是它在色譜層析的溶析部份和在凝膠電泳裡移動的位置,會不會取得太隨便了點?)。
好不容易甩掉 14-3-3 的 Raf,終於可以一展身手,改變自己的形狀與 Ras 結合,很多對 Ras-Raf 聚在舞池當中放閃,吸引其他蛋白質的注意;但是只甩掉 14-3-3 還有與 Ras 結合是不足以激活 Raf 的,因此 Raf 的好朋友 SRC 遞給它一個磷酸,這個磷酸化比能量飲料還有效,興奮的 Raf 將信息傳給了更多細胞內的蛋白質,例如 MEK 和 ERK(這些蛋白質之間的互動都有各種熱心的支架蛋白【scaffold proteins】幫忙拉進彼此距離、增加效率)。
不同於以上的其他蛋白,ERK 有一個重要的使命,被激活的 ERK 獨自踏上了細胞核之旅,路過細胞骨架、穿越形狀詭異的核孔門關,直到把信息傳給住在細胞核內的 MYC 才算完成了它的任務。MYC 是一個很厲害的轉錄因子(transcription factor),負責轉錄多達 15% 的基因!原來 ERK 傳遞給 MYC 的是一面免死金牌,使它免於被蛋白酶體(proteasomes)像碎紙機一樣快速分解消化掉。 MYC 與好基友 MAX 形成雙聚體,成剪刀形坐在特定的 DNA 序列上,它們的工作是召喚組蛋白乙醯化酶(histone acetyltransferase),在組蛋白上加上乙醯;因為 DNA 本身就帶有負電荷,也帶負電的乙醯使 DNA 與組蛋白分離,讓細胞核內的轉錄分子機器可以接近 DNA、開始表現這些基因。MYC-MAX 還有另外一招可以影響 DNA 的表現:和構造相似的 MAD-MAX 雙聚體結合,形成雙雙聚體,交叉聯結兩段 DNA。
透過這些非常複雜的細胞信息傳遞通路,小小的細胞外蛋白質 EGF 就足以啟動一整個系統的分子機器,把細胞搞得很忙,改變了整個細胞的基因表現模式,進而調節細胞的生長和行為。這條信息通路出問題可能會導致細胞異常增生,也就是癌症,難怪有史以來 MAPK 通路一直是癌症治療和藥物研發的研究重點!
現在可以觀賞這麼精美的動畫學生物學真是幸福,比死背課本上描述細胞信息傳遞的枯燥文字例如 Gs -> adenylyl cyclase -> cAMP -> PKA -> CREB 生動有趣多了,也更容易記住,真希望以前修生化和藥理學時,所有主要的信息通道都有這樣的動畫!
在修神經生理和藥理學時,我初嚐細胞信息傳遞的複雜,複雜到一位神經生理學教授說簡直是「惡夢的網路(web of nightmare)」,我問藥理學教授 Dr. Dana Selley:「細胞隨時都接收到一大堆不同的信號分子,細胞內的信息傳遞系統又那麼複雜,細胞怎麼不會搞糊塗了呢?」
Dr. Dana Selley 笑著回答:「會呀,那就叫病理現象(pathology)!」
《歡迎使用臉書直接分享此文章,但如果想轉貼或刊登其他網站、報紙、書籍、媒體等,需經過作者陳昱慈(Rita Chen)本人同意,切勿侵害著作權。》
The Molecular Interactions of the MAPK Pathway
transcription factor 在 阿賊RJ Facebook 的最讚貼文
【從實驗室到臨床應用─藥物基因體學發展現況】
每個人都有自己獨特的基因序列,這些遺傳變異 genetic variation 使每個人對相同的藥物有了不同的反應,藥物基因體學pharmacogenomics的目標就在於研究這些遺傳變異對於病患的影響,找出最適合病患的藥物和劑量進行治療。現今,越來越多臨床機構使用基因體資訊來輔助醫療決定,很多證據也顯示考慮基因型和藥物可以優化治療結果。
最初的藥物基因體學認為基因的差異是造成每個人對藥物的反應不同的主因,某種程度而言,這個宣稱是對的。然而今日的藥物基因體學除了考慮基因差異外,更納入了個體在表觀遺傳學 epigenetic的差異或核受體nuclear receptor 的差異。例如,Zanger et al. 探討了對細胞色素cytochrome P450 酵素造成影響的各種因子。[1] 總而言之,現今藥物基因體學不僅僅侷限於基因體學,更把表觀遺傳體學epigenomic和生物標誌nongenomic biomarkers作為發展個人醫療的根據。
藥物基因體學已被運用到協助癌症、心血管疾病和移植醫學的治療。例如,我們可以偵測癌症細胞中的體細胞突變somatic mutation,作為選擇使用酪氨酸激酶tyrosine kinase 還是轉錄因子抑製物transcription factor inhibitors 來治療癌症的依據。又例如,最廣為人知的例子,用來治療心血管疾病Warfarin。兩個基因的變異造成了個體之間對Warfarin的反應有了50%的差異。
儘管藥物基因體學還需要多了解基因差異以及表觀遺傳體學對藥物作用的影響,基因體資訊的儲存和運用也引起了爭議,對於如何把藥物基因體學融合到國家健康政策也還留有很多討論的空間,藥物基因體學仍對預測病人的藥物代謝動力pharmacokinetics和藥物動力pharmacodynamics 有很大的幫助。
參考資料:
[1] https://goo.gl/vtwXsb
圖片來源:https://goo.gl/SEBKwF
撰文│魏廷燕
transcription factor 在 Mars Hartdegen Youtube 的精選貼文
Tàu SP1 xuất phất từ Ga Hà Nội lức 21:10 VNR
Đường Sắt Việt Nam
??
This is a public railway station.
transcription factor 在 Transcription factors (article) | Khan Academy 的相關結果
Transcription factors are proteins that help turn specific genes "on" or "off" by binding to nearby DNA. · Transcription factors that are activators boost a ... ... <看更多>
transcription factor 在 transcription factor | Definition, Effects, & Types | Britannica 的相關結果
Transcription factor, molecule that controls the activity of a gene by determining whether the gene's DNA is transcribed into RNA. Transcription factors ... ... <看更多>
transcription factor 在 Transcription factor - Wikipedia 的相關結果
In molecular biology, a transcription factor (TF) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, ... ... <看更多>