摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
同時也有2部Youtube影片,追蹤數超過2萬的網紅Untyped 對啊我是工程師,也在其Youtube影片中提到,Coding vs Programming 軟體工程師在 編碼 or 編程? | 5 Differences between Coding and Programming【電腦說人話】 - 軟體工程師到底在幹嘛?內行外行怎麼說? Coding? Programming? 程式設計?編碼編程?想到電腦...
「api例子」的推薦目錄:
- 關於api例子 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於api例子 在 軟體開發學習資訊分享 Facebook 的最佳解答
- 關於api例子 在 惇安法律事務所 Lexcel Partners Facebook 的最佳解答
- 關於api例子 在 Untyped 對啊我是工程師 Youtube 的精選貼文
- 關於api例子 在 Untyped 對啊我是工程師 Youtube 的精選貼文
- 關於api例子 在 發佈- 影片API 的評價
- 關於api例子 在 HcwXd/swagger-api-example - GitHub 的評價
- 關於api例子 在 RESTFul API 最佳實踐| 想不起來而已 的評價
- 關於api例子 在 APIs for Beginners - How to use an API (Full Course / Tutorial) 的評價
- 關於api例子 在 使用YouTube API 打造影音搜尋App - 完整Swift 教學 的評價
- 關於api例子 在 利用Github API 上傳檔案﹍操作範例心得整理 - WFU BLOG 的評價
api例子 在 軟體開發學習資訊分享 Facebook 的最佳解答
NT 390 特價中
從這 3 小時的課程,你會學到
✅ 為什麼技術產品經理的角色在 IT 行業中越來越受歡迎,以及今天僱用 TPM 的公司的例子
✅ 如何分解大型技術業務問題並找到/利用技術洞察力(基於4個真實的行業例項)
✅ 哪些是任何真正的服務必須知道的技術產品建構塊。API、架構、可靠性、監控等
✅ 在大公司或新創公司,技術產品經理和專案管理人員、開發人員、程式和專案經理之間有什麼區別?
✅ 如何成為一名技術產品經理:PM或開發人員的成長材料(不重複通用 PM 的工藝基礎)
✅ 如何用技術產品的方法來改進你目前工作中的專案
https://softnshare.com/technical-product-manager/
api例子 在 惇安法律事務所 Lexcel Partners Facebook 的最佳解答
【鬥陣來關心】Google與甲骨文(Oracle)著作權訴訟案件
作者: 王奕雅律師
Google與甲骨文(Oracle)長達十年的著作權訴訟案件正式於2021年4月落幕,美國最高法院近日宣布,Google使用甲骨文的Java平台的原始碼,屬於合理使用範疇,無需承擔侵害著作權的責任。
Google和甲骨文的紛爭始於2010年,當時甲骨文收購了編寫Java平台的Sun Microsystems公司,獲得了Java技術,並隨即向Google提起訴訟。Java的目的是讓程式設計者撰寫的版本可以相容於不同的作業系統,其中含有許多應用程式介面(Application Programming Interface,即API),API是程式與程式之間的接口,舉個例子:顧客到餐廳閱讀菜單後想好要點什麼,而廚房也有食物準備開始製作餐點,這時就需要服務生把顧客的點餐需求通知廚房,再把廚房做好的食物送到顧客桌上。API的功能其實就是服務生的角色。再舉個例子:當消費者透過旅遊平台網站查看各家航空公司的機票,其實就是利用API在旅遊平台網站與各家航空公司網站間傳送資訊。
Google當年開發Android作業系統時,便使用了組成API的原始碼。為此,甲骨文認為甲骨文就API具有著作權,而Google侵害其著作權。Google雖承認使用了API,但主張其為「合理使用」。這場持續了十年的訴訟,美國最高法院最終以6比2裁定Google利用甲骨文的原始碼開發Android系統,屬於合理使用。法院在判決中指出:Google用來開發Android系統使用的原始碼僅佔Java API的0.4%,這符合憲法保障的「創造性進步」原則的「合理使用」。法院亦指出:若判定甲骨文勝訴,將使這些電腦原始代碼變成「限制未來新應用程式創造力的枷鎖」。簡言之,最高法院雖然認為Java API有著作權之保護,但Google之行為屬合理使用,故判決Google勝訴。
(本文之內容不代表本所之立場或法律意見)
api例子 在 Untyped 對啊我是工程師 Youtube 的精選貼文
Coding vs Programming 軟體工程師在 編碼 or 編程? | 5 Differences between Coding and Programming【電腦說人話】
-
軟體工程師到底在幹嘛?內行外行怎麼說?
Coding? Programming? 程式設計?編碼編程?想到電腦科學就會想到這些詞,但是它們到底是什麼意思?差別又在哪呢?
讓凱心琳告訴你這兩個詞的5大層面的差別!
(Tools 使用工具, Expertise 專業知識, Approach 方法途徑, Outcome 成果產出, Learning 學習過程)
在這個人手好幾台電腦的時代,實在是有好多電腦的詞聽不懂。Cookie 不再是好吃的餅乾,Class不再是學生上的課,Bug 因為非常不一樣的原因而令人討厭。Coding, Programming 兩個詞表面上好像一樣,但是實際上卻截然不同。好多詞不懂~沒關係!讓 Untyped 為你解惑!
【電腦說人話】這個系列是希望透過口語化的方式,透過生活中的例子去介紹一些看似艱澀像外星語但實際上卻不難懂的電腦科學專有名詞。希望能讓曾經對這些詞彙充滿畏懼與疑惑的妳,能夠不再害怕,勇敢學習Computer Science!
【㊫ 電腦科學/軟體工程 學習資源 📖】
全端工程師密技 Full Stack Eng - Career Path (Codecademy)
https://bit.ly/3niTwLN
前端工程師密技 Front End Eng - Career Path (Codecademy)
https://bit.ly/32K1eql
用Scala學習函式程式設計
https://bit.ly/2IF0Thv
Scala 函数式程式設計原理
https://bit.ly/3kBQXTb
平行程式設計
https://bit.ly/3pCeaZf
Android 應用程式開發 專項課程
https://bit.ly/3lGCUwW
普林斯頓大學 電腦科學 演算法 基礎理論
https://bit.ly/3nxomAh
Go 語言學起來
https://bit.ly/35AWhlv
Parallel, Concurrent, and Distributed Programming in Java 專項課程
https://bit.ly/2IGnlH4
Java 軟體工程基礎課程
https://bit.ly/3fa4gJi
全端開發 跨平台手機app 開發 完整課程
https://bit.ly/2UCGWum
#程式設計 #Programming #電腦說人話
一定要看到影片最後面並且在「YouTube影片下方」按讚留言訂閱分享唷!
-
歡迎留言告訴我你的想法,或是你想認識的程式語言唷!
每(隔週)週四晚上9點更新,請記得開啟YouTube🔔通知!
-
【相關連結】
Coding vs Programming
[https://www.codementor.io/@edwardbailey/coding-vs-programming-what-s-the-difference-yr0aeug9o]
[https://www.educba.com/coding-vs-programming/]
[https://www.goodcore.co.uk/blog/coding-vs-programming/]
【愛屋及烏】
Facebook 臉書粉專 👉 [https://www.facebook.com/untyped/]
Instagram 👉 [[https://www.instagram.com/untypedcoding/]
合作邀約 👉 untypedcoding@gmail.com
-
Untyped 對啊我是工程師 - There are so many data types in the world of computer science, so are the people who write the code. We aim to UNTYPE the stereotype of engineers and of how coding is only for a certain type of people.
凱心琳: 一個喜歡電腦科學邏輯推理,在科技圈努力為性別平等奮鬥的女工程師。
-
This video contains affiliate links, which means that if you click on one of the product links, I'll receive a small commission.
圖片影片音效:[giphy.com] [pngwave.com][freesound.org][soundbible.org]
【Disclaimer 聲明】
Some links are affiliated.
上面有些連結是回饋連結,如果你透過這些連結購買商品,我可以得到一些小獎勵,但不會影響到你購買的價格,甚至會是更低的價格!謝謝你的支持💕
api例子 在 Untyped 對啊我是工程師 Youtube 的精選貼文
API? IPA? 應用程式介面是什麼? API種類介紹 | What is API? REST? SOAP? 【電腦說人話】
-
API、IPA 傻傻分不清楚?某個app又發布了新的API?你知道應用程式之間是怎麼溝通的嗎?API好多種到底怎麼分?
公司的工程師同事又在討論新的API,啥?API是什麼?查了一下發現API的中文是應用程式介面。字都會唸但就是不懂。相信不論你有沒有接觸過Computer Science 電腦科學,可能都有聽過API這個詞。
凱心琳我曾經也被API這個詞搞得一頭霧水,大家都說它很重要它很棒,但是很少有人講得清楚他到底是什麼做什麼用的。一下REST一下SOAP的,到底在講什麼?甚至很多寫過API的工程師也無法解釋API的本質,以為所有的API都是同一種形式。這次要透過一些生活化的例子,介紹鼎鼎大名的API。並且分享Open API, Internal API, Partner API, Web Service, REST, SOAP 這些東西到底是什麼。
【電腦說人話】這個系列是希望透過口語化的方式,透過生活中的例子去介紹一些看似艱澀像外星語但實際上卻不難懂的電腦科學專有名詞。希望能讓曾經對這些詞彙充滿畏懼與疑惑的妳,能夠不再害怕,勇敢學習Computer Science!
#API #REST #電腦說人話
一定要看到影片最後面並且在「YouTube影片下方」按讚留言訂閱分享唷!
-
歡迎留言告訴我你的想法,或是你想認識的程式語言唷!
每(隔週)週四晚上9點更新,請記得開啟YouTube🔔通知!
-
【相關連結】
*What is an API? In English, please.*
[https://www.freecodecamp.org/news/what-is-an-api-in-english-please-b880a3214a82/]
[https://www.howtogeek.com/343877/what-is-an-api/]
[https://apifriends.com/api-management/what-is-an-api/]
*Types of APIs*
[https://rapidapi.com/blog/types-of-apis/]
[https://stoplight.io/api-types/]
[https://www.cevgroup.org/what-is-api/]
【What I used to make this video】
個人電腦:Apple MacBook Pro [https://amzn.to/2HKgI2T]
拍攝錄音錄影: iPhone X [https://amzn.to/3c0s6Fu]
相機: Canon 80D [https://amzn.to/2VVmiYz]
錄音: Rode [https://amzn.to/3aqnzL2]
鍵盤: Logitech MX Keys Wireless Keyboard [https://amzn.to/3awqi5L]
【愛屋及烏】
Facebook 臉書粉專 👉 [https://www.facebook.com/untyped/]
Instagram 👉 [https://www.instagram.com/untypedcoding/]
合作邀約 👉 untypedcoding@gmail.com
-
Untyped 對啊我是工程師 - There are so many data types in the world of computer science, so are the people who write the code. We aim to UNTYPE the stereotype of engineers and of how coding is only for a certain type of people.
凱心琳: 一個喜歡電腦科學邏輯推理,在科技圈努力為性別平等奮鬥的女工程師。
-
This video contains affiliate links, which means that if you click on one of the product links, I'll receive a small commission.
圖片影片音效:[giphy.com] [pngwave.com][freesound.org]
api例子 在 HcwXd/swagger-api-example - GitHub 的推薦與評價
"swagger": "2.0", "info": { "version": "1.0.0", "title": "Api Document Example", "description": "這是一個學習如何使用Swagger 產生API Document 的範例。 ... <看更多>
api例子 在 RESTFul API 最佳實踐| 想不起來而已 的推薦與評價
每個API 應該都要有良好的說明,最好是有完整的request/response 內容範例。API 的說明文件可以利用工具程式來產生,以提供最即時的資訊。 說明文件必須公開於網路上,讓 ... ... <看更多>
api例子 在 發佈- 影片API 的推薦與評價
此API 支援可恢復和不可恢復的上載協定。我們建議使用可恢復上載協定,此協定更加靈活,可以妥善處理連線中斷情況。 請注意,本文件的例子使用專頁節點,但同樣適用於 ... ... <看更多>