📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有1部Youtube影片,追蹤數超過6萬的網紅Herman Yeung,也在其Youtube影片中提到,電子書 (手稿e-book) (共261頁) (HK$199) https://play.google.com/store/books/details?id=Fw_6DwAAQBAJ Calculus 微積分系列︰ https://www.youtube.com/playlist?list=PLz...
degree of curve 在 CheckCheckCin Facebook 的最佳解答
【暖男養成記】好感度Up的貼心行為
⭐穿高跟鞋走路變女王
⭐風光背後有苦自己知
#星期一踢走BlueMonday
如何照料高跟鞋女生
穿高跟鞋的女生走起路來無疑是婀娜多姿,雙腿顯得更修長,但你知道穿高跟鞋對身體造成的傷害嗎?尖細鞋頭令腳容易出現疼痛、水泡、拇趾外翻等症狀;腳跟踮起令肌肉長期繃緊,腳部血液不能流通,容易出現氣血瘀滯的情況;高跟鞋令人重心前移、骨盆前傾,影響腰椎、頸椎健康,隨時出現腰痛、頸椎病等問題。如果因為工作關係女生需要長時間穿高跟鞋,記得多表達你的關心,你可以做的最少有以下四點:
1. 拖著她慢慢走
當女生穿著高跟鞋時,雙腳容易浮腫又疲累,請減慢步速遷就女生,並好好拖實她的手,穿高跟鞋時扭傷腳踝的機會比較高。
2. 愛心足浴
晚上為她準備足浴,最簡單就是準備一盆約攝氏40度的暖水,水量浸過腳跟,讓她浸腳20至30分鐘,足浴有助氣血運行,也能令心情放鬆。
3. 小腿按摩
多穿高跟鞋的話小腿都比較累,立即化身按摩師按摩一下她的雙腿吧!記得多按兩下承山穴(小腿肚肌肉下方的凹陷處),有助促進小腿血液循環,紓緩腳痛及腳抽筋,亦能美化小腿曲線。
4. 準備替換鞋
如果你會駕車接送她的話,在車內準備一雙舒適的平底鞋給她替換吧。
留言或按讚👍🏻支持一下我們吧!❤️ 歡迎 Follow 我們獲得更多養生資訊。
Take care of high heel wearing ladies
Women with heels no doubt are more feminine and would seem to have a pair of long and lean legs, but do you know the damage heels can cause to the body?
Pointed heels can cause pain to the legs, blister and bunion (deformity of the joint connecting the big toe to the foot). Walking tiptoe creates constant muscle tension, thus disrupting blood circulation to the feet and forming blood stasis.
Wearing heels can also cause the center of gravity and pelvis to shift forward, which will adversely affect the lumbar and cervical spine, hence leading to problems like pain in the waist and cervical spondylosis.
If you notice your female friends have been wearing heels for an extended period, do show that you care by doing the four things below:
1. Walk with her slowly
Women with heels normally have swollen and tired feet, please slow down, and even hold their hands. There is also a higher chance of them spraining their ankles, so we need to be on alert.
2. Foot bath with love
Prepare a footbath at night, even if it’s just a bowl of 40-degree Celsius warm water. The water level should stay above the heels. Allow them to submerge their feet for about 20 – 30 minutes. Footbath can help improve blood circulation and relieve tension.
3. Massage the calves
Walking in heels puts great pressure on the lower leg, so become a masseur and give them a calf message! Remember to massage the ‘cheng shan’ acupoint (the dent in the calf muscles) to improve blood circulation, relieve pain and cramp, at the same time, improve the curve line of the calves.
4. Prepare a pair of flats
If you are picking them up, do prepare a pair of comfortable flats for them to change in the car.
Comment below or like 👍🏻 this post to support us. ❤️ Follow us for more healthy living tips.
#男 #女 #我疲憊 #氣滯 #血瘀
degree of curve 在 YaoIndia 就是要印度︱認識印度,從這裡開始 Facebook 的最佳貼文
#YaoIndia就是要印度報你知
不適合出門的連假週五,讓我們一起開啟一個不同的夜晚吧!
阿喀郎‧汗舞團《#陌生人》
#XENOS by Akram Khan
#線上免費觀看(至6月13日)>>
https://www.arte.tv/en/videos/093507-000-A/xenos-by-akram-khan/
「我跳舞的身體,被當成戰爭工具。」
150萬名印度農民傭兵為了歐陸的帝國神話參加戰役,最後戰死於家鄉萬哩外的歐洲、中東、非洲土地。阿喀郎投身這段鮮為人知的戰史,扮演一位前往戰場的印度傳統舞者,蘊藏舞藝的身體成了戰場上殺戮與被殺的機器,硝煙焦土中的舞蹈跳出生之回憶,也跳出死的絕滅。
先後曾七度來台的阿喀郎,在2019年受國家兩廳院 NTCH, Taipei邀請,來台呈現舞者生涯的最後一支獨舞作品《陌生人》。
編舞家與獨舞者|阿喀郎‧汗
阿喀郎‧汗是當代舞蹈界的天才編舞家,在過去18年的舞蹈生涯中,創作了諸多成功舞作,包括近年國際競邀的《Until the Lions》、《Kaash》、《iTMOi -in the mind of igor》、《DESH》、《Vertical Road》、《Gnosis》及《Zero Degree》。
阿喀郎作品多是跨文化,並與國際一流藝術家合作,包括與法國知名芭蕾舞者西薇‧姬蘭,由林懷民編舞的《Sacred Monsters》(聖獸舞姬),與西迪‧拉比合作《Zero Degree》(零度複數),與奧斯卡女星茱麗葉.碧諾許合作《In-I》,與佛拉明哥的前衛才子卡勒凡(Israel Galván)合作《Torobaka》;也為中國國家芭蕾舞團編作《bahok》,英國國家芭蕾舞團編作《Giselle》(吉賽兒);以及流行歌手凱莉.米洛的演唱會及倫敦奧運開幕編舞,其個人明星般的形象,早已不僅僅限於舞蹈界而已。
出生於 #英國 的阿喀郎,自幼即在印度舞蹈學院與大師司里‧普拉塔波‧帕沃學習500年前的 #印度卡達克古典舞。之後分別在英國的迪蒙弗特大學及里茲北方現代舞學院浸淫現代舞的世界。阿喀郎孟加拉裔倫敦出生的特殊背景,特別在全球化的時代潮流中,其本身的「(異)文化」素材,成為其創作最重要的寶藏。阿喀郎在13歲的時候,就在劇場導演彼得‧布魯克的跨文化作品《#摩訶婆羅達》中演出,而2000年成立阿喀郎舞團後,也一直以其混融了印度卡達克舞蹈,及西方現代舞之異文化肢體美學和題材,在競爭激烈的歐洲舞壇立足。
阿喀郎曾是倫敦南岸表演中心舞蹈廳駐館編舞家,他是第一位榮獲這個殊榮的非音樂藝術家,目前是倫敦沙德勒之井(Sadler's Wells)以及萊斯特劇院(Curve, Leicester)的約聘藝術家。
一起來欣賞這位國際舞蹈大師阿喀郎·汗舞者生涯的封箱之作!
(上述演出簡介及舞蹈家簡介擷取自 #國家兩廳院 2019舞蹈秋天 阿喀郎‧汗舞團《陌生人》演出資訊及節目單)
#時事必讀
#隨時更新🇮🇳#新型冠狀病毒 印度疫情與規定變更
👉 https://yaoindia.com/archives/29562
YaoIndia 就是要印度︱認識印度,從這裡開始
#YaoIndia #就是要印度 #印度報你知 #印度 #武漢肺炎 #新冠肺炎 #疫情 #防疫 #舞蹈 #阿喀郎汗 #阿喀郎汗舞團 #AkramKhan #免費觀看
degree of curve 在 Herman Yeung Youtube 的精選貼文
電子書 (手稿e-book) (共261頁) (HK$199)
https://play.google.com/store/books/details?id=Fw_6DwAAQBAJ
Calculus 微積分系列︰ https://www.youtube.com/playlist?list=PLzDe9mOi1K8o2lveHTSM04WAhaGEZE7xB
適合 DSE 無讀 M1, M2,
但上左 U 之後要讀 Calculus 的同學收睇
由最 basic (中三的 level) 教到 pure maths 的 level,
現大致已有以下內容︰
(1) Concept of Differentiation 微分概念
(2) First Principle 基本原理
(3) Rule development 法則證明
(4) Trigonometric skills 三角學技術
(5) Limit 極限
(6) Sandwiches Theorem 迫近定理
(7) Leibniz Theorem 萊布尼茲定理
(8) Logarithmic differentiation 對數求導法
(9) Implicit differentiation 隱函數微分
(10) Differentiation of more than 2 variables 超過2個變數之微分
(11) Differentiation by Calculator 微分計數機功能
(12) Application of Differentiation - curve sketching 微分應用之曲線描繪
(13) Meaning of Integration 積分意義
(14) Rule of Integration 積分法則
(15) Trigonometric rule of Integration 三角積分法則
(16) Exponential, Logarithmic rule of integration 指數、對數積分法則
(17) Integration by Substitution 代換積分法
(18) Integration by Part 分部積分法
(19) Integration Skill : Partial Fraction 積分技術︰部分分式
(20) Integration by Trigonometric Substitution 三角代換積分法
(21) t-formula
(22) Reduction formula 歸約公式
(23) Limit + Summation = Integration 極限 + 連加 = 積分
(24) Application of Integration – Area 積分應用之求面積
(25) Application of Integration – Volume 積分應用之求體積
(26) Application of Integration – Length of curve 積分應用之求曲線長度
(27) Application of Integration – Surface area 積分應用之求表面積
(28) L’ Hospital rule 洛必達定理
(29) Fundamental Theorem of Integral Calculus 微積分基礎原理
(30) Calculus on Physics 微積分於物理上的應用
(31) Calculus on Economics 微積分於經濟上的應用
(32) Calculus on Archeology 微積分於考古學上的應用
之後不斷 updated,大家密切留意
------------------------------------------------------------------------------
Pure Maths 再現系列 Playlist: https://www.youtube.com/playlist?list=PLzDe9mOi1K8os36AdSf64ouFT_iKbQfSZ
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
HKDSE Mathematics 數學天書 訂購表格及方法︰
http://goo.gl/forms/NgqVAfMVB9
------------------------------------------------------------------------------
Blogger︰ https://goo.gl/SBmVOO
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
------------------------------------------------------------------------------