ref: https://ably.com/blog/no-we-dont-use-kubernetes
八月第一篇,就來個有趣的文章,來看看 ably 這間 SaaS 公司為什麼沒有使用 Kubernetes,不但當前沒有使用,甚至短期未來內都不會想要使用
更是直接的說如果你有興趣來加入團隊,千萬不要把將 Kubernetes 導入到團隊中是一個可能發生的事情。
我個人覺得這篇文章滿好的,因為是認真的去比較導入 Kubernetes 帶來的改變,而這些改變對團隊來說到底是可接受還是不可接受
而不是所謂的人云亦云,人家要我也要,人家不要我也不要...
文章分成兩部分,前述介紹當前 Ably 的環境架構是什麼,而半部分則是很技術的去探討如果導入 Kubernetes 帶來的好處與壞處是什麼
最終權衡比較之下,會發現導入 Kubernetes 沒有帶來實質上的好處。
文章開頭先簡述了一下 Kubernetes 這幾年的風潮,從最初 Google Borg 的開發開始談起,作者特別提到當初 Borg 的用法可是將一堆實體機器給搭建出一個 Private Cloud 的叢集給團隊使用,
而目前 Kubernetes 更多的用法則是搭建於 Public Cloud 上面的虛擬機器中,透過將 Kubernetes 部署到這些不同的 Cloud Provider 似乎帶來了介面統一的結果,對於 DevOps 人員來說
不同 Cloud Provider 如今看起來都是 Kubernetes 的樣貌。
Ably 目前到底怎麼部署應用程式
Ably 主要使用 AWS 作為其 Cloud Provider,並且於 EC2 機器上使用 docker/container 來部署團隊中的應用程式。
作者團隊中沒有使用任何已知的 Orchestration 服務來管理多節點上的 docker/container,取而代之的則是每個 VM 開機後則會根據 autoscaling group 的機制來判斷
每個機器應該要部署哪種 container/docker。
對於 Ably 來說,團隊中沒有任何 scheduler 相關的服務來調度各種服務,這意味每個 VM 就代表一種服務,所以將 VM 上的服務從 Core 轉換成 frontend 這種行為不會發生。
今天需要針對需求轉換服務時就以 VM 為基準來整批換掉即可。
每個節點上面都會有一個輕量的監控服務,用來確保運作的 Container 如果掛掉後可以被重啟,甚至如果當前運行的版本不符合需求時也能夠將該服務給停止。
流量方面,因為每個 Autoscaling Group 就代表一個服務,所以直接使用 NLB 與 Target Group 來將流量導入該 Autoscaling Group 即可。
至於容器與容器之間的內部流量(譬如 k8s service 等)作者認為也不是太大問題,畢竟每個機器本身都會被 VPC 賦予一個 IP 地址,所以使用上沒有什麼太大的問題。
接下來作者從幾個層次去探討當前設計與使用 Kubernetes 帶來的改變,分別有 (原文很多,這邊摘要不然文章會太長)
題外話,由於 Ably 的 Infra Team 數量有限,所以要考慮 K8s 只會考慮 K8s Service,如 EKS。
1. Resource Management
Ably:
a. 根據服務的需求來決定每個服務要用到的 VM 等級
b. 不需要去煩惱如何處理將多個小服務給部署到一個適合的大 VM 中
c. 作者稱這種行為其實就是 AWS 官方強調的 Right Sizing, 譬如只能跑兩個 Thread 的服務不需要 16vCPUs, 久久寫一次硬碟的服務也不需要一個 90,000 IOPS 的 SSD
d. 選擇一個正確的元件來搭建一個符合服務的 VM 讓團隊可以控制成本同時也減少額外的管理負擔
K8s:
a. 必須要使用一個比較強大等級的 EC2 VM,畢竟上面要透過 Container 部署很多服務
b. 針對那些需要小資源的服務來說,透過這種方式能夠盡可能的榨乾機器的資源,整體效能使用率會更好
c. 但是針對資源量沒有很辦法明確定義的服務則是會盡可能地去吃掉系統上的資源,這種被稱為 nosy neighbors 的常見問題已經不是首次出現了, Cloud Provider 本身就需要針對 VM 這類型的服務去思考如何處理資源使用,而 Cloud Provider 都有十年以上的經驗再處理這一塊
而所有 Kubernetes 的使用者則必須要自己去處理這些。
d. 一個可能的作法則是一個 VM 部署一個服務,不過這個做法跟團隊目前的作法已經完全一致,所以就資源管理這一塊,團隊看不到使用 Kubernetes 的優勢。
2. Autoscaling
Ably:
a. EC2 VM 本身可以藉由 Autoscaling Group 來動態調整需求
b. 有時候也是會手動的去調整 EC2 的數量,基本上手動跟自動是互相輔佐的
c. 團隊提供的是 SaaS 服務,所以其收費是針對客戶實際上用多少服務來收,如果開了過多 EC2 VM,則很多不要的花費與開銷都是團隊要自行吸收
d. 團隊需要一個盡可能有效率的方式能夠即使遇到流量暴衝時也能夠保證良好的服務的機制
K8s:
a. 可以透過不少方式來動態調整 Container 的數量,
b. 甚至可以透過 Cluster autoscaler 來針對節點進行調整,根據需求關閉節點或是產生更多節點
c. 動態關閉節點的有個問題是關閉節點時通常會選擇盡可能閒置的節點,但是閒置並不代表沒有任何服務部署再
上面,因此該節點上的 Container 都要先被轉移到其餘節點接者該目標節點才可以被正式關閉。這部分的邏輯作者認為相對複雜
d. 整體來說,k8s 有兩個動態調整的部分,動態節點與動態服務,而現有的架構只有一個動態節點。所以使用 k8s 則會讓問題變得更多更複雜。
3. Traffic Ingress
Ably:
a. Traffic Ingress 基本上每個 cloud provider 都提供了很好的解決方案,基本上團隊只要能夠維持每個服務與背後的機器的關係圖,網路流量基本上都沒有什麼需要團隊管理的。
b. 使用者會透過直接存取 NLB 或是透過 CloudFront 的方式來存取團隊內的服務
K8s:
a. EKS 本身可以透過 AWS VPC CNI 使得每個 Container 都獲得 VPC 內的 IP,這些 IP 都可以讓 VPC 內的其他服務直接存取
b. 透過 AWS LB Controller,這些 Container 可以跟 AWS LB 直接整合,讓封包到達 LoadBalancer 後直接轉發到對應的 Container
c. 整體架構並不會比團隊目前架構複雜
d. 唯一缺點大概就是這個解決方案是完全 AWS 綁定,所以想要透過 k8s 來打造一個跨 Cloud Provider 的統一介面可能就會遇到不好轉移的問題。
4. DevOps
Ably:
a. 開發團隊可以透過簡單的設定檔案來調整部署軟體的版本,後續相關機制就會將 VM 給替換掉,然後網路流量也會自然的導向新版服務
K8s:
a. 開發團隊改使用 Kubernetes 的格式來達到一樣的效果,雖然背後運作的方式不同但是最終都可以對開發團隊帶來一樣的效果。
上次四個分析基本上就是,使用 k8s 沒有帶來任何突破性的好處,但是 k8s 本身還有其他的功能,所以接下來作者想看看 k8s 是否能夠從其他方面帶來好處
Multi-Cloud Readiness
作者引用兩篇文章的內容作為開頭,「除非經過評估,否則任何團隊都應該要有一個跨 Cloud-Provider 的策略」
作者表明自己團隊的產品就是那個經過評估後斷言不需要跨 Cloud Provider 策略的團隊,同時目前沒有往這個方向去追求的打算。
同時作者也不認為 K8s 是一個能夠有效達成這個任務的工具。舉例來說,光 Storage 每家的做法都不同,而 K8s 沒有辦法完全將這些差異性給抽象畫,這意味者開發者終究還是要針對這些細節去處理。
Hybrid Cloud Readiness
管理混合雲(Public Cloud + Private Cloud based on Bare-Metal servers)是作者認為一個很合理使用 K8s 的理由,畢竟這種用法就跟當初 Google Borg 用法一致,是經過驗證可行的。
所以 Ably 如果有計畫要維護自己的資料中心時,底層就會考慮使用 Kubernetes 來管理服務。畢竟這時候沒有任何 Cloud Provider 提供任何好像的功能。
不過 Ably 目前沒有任何計畫,所以這個優點也沒有辦法幫助到團隊
Infrastructure as Code
團隊已經大量使用 Terraform, CloudFormation 來達成 IaC,所以透過 k8s YAML 來維護各種架構不是一個必要且真的好用的方式。
Access to a large and active community
另外一個很多人鼓吹 K8S 的好處就是有龐大的使用者社群,社群內有各種問題分享與探討。
作者認為
a. AWS 的使用者社群數量是高於 Kubernetes
b. 很多情況下,一個迭代太快速的產品其實也不一定對團隊有太大的幫助。
c. 很多人都使用 k8s,但是真正理解 k8s 的人微乎其微,所以想要透過社群來幫忙解決問題其實比你想像的還要難,畢竟裡面的問題太雜,很多時候根本很難找到一個真正有效的答案。
Added Costs of Kubernetes
為了轉移到 K8s, 團隊需要一個全新的 team 來維護 k8s 叢集以及使用到的所有基本服務。舉例來說,EKS, VPN CNI, AWS LB 帶來的網路好處並不是啟動 EKS 就會有的,
還必須要安裝相關的 Controller 並且進行設定,這些都是額外的維運成本。
如果找其他的服務供應商來管理 Kubernetes,這意味公司就要花費更多的$$來處理,所以對團隊來說,金錢與工作量都會提高,不同的解決方式只是這兩個指標的比例不同而已。
結論:
1. Ably 覺得 Kubernetes 做得很好,但是團隊目前沒有任何計畫去使用它,至少目前這階段沒有看到任何實質好處
2. 仔細評估後會發現,導入 k8s 其實也會帶出不少管理上的問題,反而並沒有減輕本來的負擔
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
docker啟動container 在 矽谷牛的耕田筆記 Facebook 的最佳貼文
本文延續前篇效能校正的經驗談,上篇文章探討了關於應用程式本身可以最佳化的部分,包含了應用程式以及框架兩個部分。本篇文章將繼續剩下最佳化步驟的探討。
Speculative Execution Mitigations
接下來探討這個最佳化步驟對於效能有顯著的提升,但是本身卻是一個非常具有爭議性的步驟,因為其涉及到整個系統的安全性問題。
如果大家對前幾年非常著名的安全性漏洞 Spectre/Meltdown 還有印象的話,本次這個最佳化要做的就是關閉這類型安全性漏洞的處理方法。
標題的名稱 Speculative Execution Migitations 主要跟這漏洞的執行概念與 Pipeline 有關,有興趣理解這兩種漏洞的可以自行研究。
作者提到,大部分情況下這類型的防護能力都應該打開,不應該關閉。不過作者認為開關與否應該是一個可以討論的空間,特別是如果已經確認某些特別情境下,關閉防護能力帶來的效能如果更好,其實也是一個可以考慮的方向。
舉例來說,假設今天你運行了基於 Linux 使用者權限控管與 namespaces 等機制來建立安全防護的多使用者系統,那這類型的防護能力就不能關閉,必須要打開來防護確保整體的 Security Boundary 是完整的。 但是如果今天透過 AWS EC2 運行一個單純的 API Server,假設整個機器不會運行任何不被信任的程式碼,同時使用 AWS Nitro Enclaves 來保護任何的機密資訊,那這種情況下是否有機會可以關閉這類型的檢查?
作者根據 AWS 對於安全性的一系列說明認為 AWS 本身針對記憶體的部分有很強烈的保護,包含使用者之間沒有辦法存取 Hyperviosr 或是彼此 instance 的 Memory。
總之針對這個議題,有很多的空間去討論是否要關閉,以下就單純針對關閉防護能力帶來的效能提升。
作者總共關閉針對四種攻擊相關的處理能力,分別是
Spectre V1 + SWAPGS
Spectre V2
Spectre V3/Meltdown
MDS/Zombieload, TSX Anynchronous Abort
與此同時也保留剩下四個,如 iTLB multihit, SRBDS 等
這種設定下,整體的運作效能再次提升了 28% 左右,從 347k req/s 提升到 446k req/s。
註: 任何安全性的問題都不要盲從亂遵循,都一定要評估判斷過
Syscall Auditing/Blocking
大部分的情況下,Linux/Docker 處理關於系統呼叫 Auditing/Blocking 兩方面所帶來的效能影響幾乎微乎其微,不過當系統每秒執行數百萬個系統呼叫時,這些額外的效能負擔則不能忽視,如果仔細觀看前述的火焰圖的話就會發線 audit/seccomp 等數量也不少。
Linux Kernel Audit 子系統提供了一個機制來收集與紀錄任何跟安全性有關的事件,譬如存取敏感的機密檔案或是呼叫系統呼叫。透過這些內容可以幫助使用者去除錯任何不被預期的行為。
Audit 子系統於 Amazon Linux2 的環境下預設是開啟,但是本身並沒有被設定會去紀錄系統呼叫的資訊。
即使 Audit 子系統沒有真的去紀錄系統呼叫的資訊,該子系統還是會對每次的系統呼叫產生一點點的額外處理,所以作者透過 auditctl -a never,task 這個方式來將整體關閉。
註: 根據 Redhat bugzilla issue #1117953, Fedora 預設是關閉這個行為的
Docker/Container 透過一連串 Linux Kernel 的機制來隔離與控管 Container 的執行權限,譬如 namespace, Linux capabilities., cgroups 以及 seccomp。
Seccomp 則是用來限制這些 Container 能夠執行的系統呼叫類型
大部分的容器化應用程式即使沒有開啟 Seccomp 都能夠順利的執行,執行 docker 的時候可以透過 --security-opt seccomp=unconfined 這些參數告訴系統運行 Container 的時候不要套用任何 seccomp 的 profile.
將這兩個機制關閉後,系統帶來的效能提升了 11%,從 446k req/s 提升到 495k req/s。
從火焰圖來看,關閉這兩個設定後,syscall_trace_enter 以及 syscall_slow_exit_work 這兩個系統呼叫也從火焰圖中消失,此外作者發現 Amazon Linux2 預設似乎沒有啟動 Apparmor 的防護,因為不論有沒有關閉效能都沒有特別影響。
Disabling iptables/netfilter
再來的最佳化則是跟網路有關,大名鼎鼎的 netfilter 子系統,其中非常著名的應用 iptables 可以提供如防火牆與 NAT 相關功能。根據前述的火焰圖可以觀察到,netfilter 的進入 function nf_hook_slow 佔據了大概 18% 的時間。
將 iptables 關閉相較於安全性來說比較沒有爭議,反而是功能面會不會有應用程式因為 iptables 關閉而不能使用。預設情況下 docker 會透過 iptables 來執行 SNAT與 DNAT(有-p的話)。
作者認為現在環境大部分都將 Firewall 的功能移到外部 Cloud 來處理,譬如 AWS Security Group 了,所以 Firewall 的需求已經減少,至於 SNAT/DNAT 這類型的處理可以讓容器與節點共享網路來處理,也就是運行的時候給予 “–network=host” 的模式來避免需要 SNAT/DNAT 的情境。
作者透過修改腳本讓開機不會去預設載入相關的 Kernel Module 來達到移除的效果,測試起來整體的效能提升了 22%,從 495k req/s 提升到 603k req/s
註: 這個議題需要想清楚是否真的不需要,否則可能很多應用都會壞掉
作者還特別測試了一下如果使用 iptables 的下一代框架 nftables 的效能,發現 nftables 的效能好非常多。載入 nftables 的kernel module 並且沒有規則的情況下,效能幾乎不被影響(iptables 則相反,沒有規則也是會影響速度)。作者認為採用 nftables 似乎是個更好的選擇,能夠有效能的提升同時也保有能力的處理。
不過 nftables 的支援相較於 iptables 來說還是比較差,不論是從 OS 本身的支援到相關第三方工具的支援都還沒有這麼完善。就作者目前的認知, Debian 10, Fedora 32 以及 RHEL 8 都已經轉換到使用 nftables 做為預設的處理機制,同時使用 iptables-nft 這一個中介層的轉換者,讓所有 user-space 的規則都會偷偷的轉換為底層的 nftables。
Ubuntu 似乎要到 20.04/20.10 的正式版本才有嘗試轉移到的動作,而 Amazon Linux 2 依然使用 iptables 來處理封包。
下篇文章會繼續從剩下的五個最佳化策略繼續介紹
https://talawah.io/blog/extreme-http-performance-tuning-one-point-two-million/
docker啟動container 在 矽谷牛的耕田筆記 Facebook 的最讚貼文
本篇文章是個經驗分享文,作者分享使用 Docker 作為開發環境時值得注意的 Best practices,透過這些經驗分享希望能夠讓開發者少走一些冤枉路。
原文提出了 15 個經驗談,這邊幫大家節錄幾個,有興趣的可以點選原文瞭解更多!
1. One thing at a time
2. Be ephemeral
3. Utilize .dockerignore
4. Less is more
5. Secrets should be secret
6. PID 1 is your birth right
7. Share and Care
8. Vulnerability Scan
9. Tag like you mean it
10. Permissions are costly
11. Source of Truth
12. Always official
13. Don’t include debug
14. Use entry point script smartly
15. Size does matter
One thing at a time
建置 Image 的時候專注做好一件事情,每個 Image 應該有一個專心要解決的問題,譬如一個應用程式,一個小工具等。對於 Nginx 這類型的 Image 來說,應該沒有人會期望於裡面看到有 Apache 的應用程式吧?
Be ephemeral
這個主要探討的是該 Image 本身建置時應該要以 stateless 的概念去處理,未來不論是透過 docker 或是 Kubernetes 來管理部署時,Contaienr 都很有機會被重啟,每次的重啟都意味該容器是重新啟動。所以千萬不要讓你的 Image 變成多次重啟會導致應用程式出問題的形式,任何的這類型資料應該都要透過外部取得,不要塞到你的 Image 內
Utilize .dockerignore
善用 .dockerignore 這個檔案來將不必要的檔案從 build 過程給排除,使用方法與 .gitignore 類似。透過這個檔案的設定可以避免 docker build 的時候不會把一些過大或是完全不需要的檔案都送給 docker daemon,不當浪費時間也浪費空間。
Less is more
避免安裝任何無關或是非必要的套件到你的 image 中,特別是那些 "nice to have" 的理由。
註: 我個人是滿討厭把 Image 弄得很乾淨的,除錯什麼工具都沒有,連 ash/sh/busybox/bash 都沒有的 image 更是我討厭中的排行榜冠軍
Secrets should be secret
任何機密資訊都應該要於運行期間動態載入,而不是建置期間塞入。請使用其他工具譬如 Vault 來管理這些機密資訊,並且執行期間讓 Container 能夠存取到正確的值。
PID 1 is your birth right
Linux 環境下會使用 SIGTERN, SIGKILL 等相關的 Singal 來戳你的應用程式,請確保你運行的應用程式要能夠攔截這些訊號來處理並完成有效的 Graceful shutdown.
Share and Care
如果環境中有多個 Image 彼此有共享相同的工具與功能,與其每個 Image 都單獨建置維護不如建置一個 Base Image,接者讓所有要使用的 image 去載入使用即可。
透過這種方式可以讓整體的維護性與管理性更為簡單,每個 image 可以減少重複的程式碼,同時要升級時只要針對 base Image 處理即可。
https://medium.com/pradpoddar/avoid-costly-mistakes-using-advanced-docker-development-best-practices-acd812784109