📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有3部Youtube影片,追蹤數超過5,140的網紅寶博士,也在其Youtube影片中提到,【來賓:陳品 Pelith 創辦人兼執行長】(錄音時間2020.02.20) ⭐EasyDAI 推薦連結:http://easydai.app/dab 📍年化利率18%,你敢買就是你的!(預言成真✅:現在不太敢!) 📍DeFi 到底是什麼?安全嗎?(預言成真✅:真不夠安全!) 📍DeFi 對區塊鏈來...
「oracle between」的推薦目錄:
oracle between 在 中央研究院 Academia Sinica Facebook 的精選貼文
全球首款 | 甲骨時稱錶
OI Watch _ Oracle Bone Inscription Watch
_________________________________
商代甲骨卜辭的時段名稱(時稱)融入現代時制
時時刻刻 ‧ 穿梭古今
以甲骨文「今」為手錶時針,「人」為分針。在商代時稱與現代十二時制相對應的錶面上運行,時時刻刻,穿梭古今。
The design concept harks back to the different times of day (expressions of time) on the Shang oracle bone inscriptions.The character Jin (today) is the hour hand and the character Ren (human) is the minute hand.
_________________________________
🕗🕘🕙🕛🕓🕔
【旦】朝晨、太陽升起之際
【大采】約早上八點
【大食】朝食之時,約上午九、十點
【中日】正午時分
【小食】夕食之時,約下午四點
【小采】約下午四、五點
Dan (daybreak) —Dawn, the time of sunrise.
Da Cai (sunrise color) —Approximately 8 a.m.
Da Shi (big meal) —Approximately between 9 and 10 a.m. (breakfast)
Zhong Ri (midday) —Noon.
Xiao Shi (small meal) —Approximately 4 p.m.
Xiao Cai (sunset color) —Approximately between 4 and 5 p.m.
_____________
㊙ 藏藍 ● 首波限量350只
_____________
🛒 售價: https://reurl.cc/GVYpoy
(此商品目前僅於實體商店歷史文物陳列館 Museum of Institute of History and Philology販售,即日起開賣,欲購從速)
#限量是殘酷的
#文字學 #甲骨文 #錶 #中研院
#中研禮品
oracle between 在 NetApp Taiwan Facebook 的最讚貼文
⚡以NVMe 提升你的資料處理速度⚡
實例證明,在Oracle環境中,NVMe有幾個令人興奮的優勢:
✅低延遲、
✅更高的可用性、
✅簡單且易於管理、
✅釋放CPU效能- 與傳統的SAN環境相比,NVMe對伺服器CPU的負擔更少,從而使您的CPU可釋放做更多應用程式中的運算工作。
了解更多NVMe如何提高您的企業系統效能👉https://ntap.com/2PtzCzi
oracle between 在 寶博士 Youtube 的最佳解答
【來賓:陳品 Pelith 創辦人兼執行長】(錄音時間2020.02.20)
⭐EasyDAI 推薦連結:http://easydai.app/dab
📍年化利率18%,你敢買就是你的!(預言成真✅:現在不太敢!)
📍DeFi 到底是什麼?安全嗎?(預言成真✅:真不夠安全!)
📍DeFi 對區塊鏈來說是有利還有害?(未定之天🤷🏻♂️)
⭐Pelith: https://pelith.com/
⭐Telegram:https://t.me/laijack
【各種補充】
📍CryptoCow https://medium.com/cryptocow/
📍APR 年化報酬率 https://en.wikipedia.org/wiki/Annual_percentage_rate
📍Oracle(區塊鏈報價機制) https://www.blocktempo.com/oracle-the-bridge-between-blockchain-and-real-world/
📍擠兌 https://zh.wikipedia.org/wiki/%E6%93%A0%E6%8F%90
📍寶可夢-大嘴鷗(鵜鶘) https://wiki.52poke.com/zh-hant/%E5%A4%A7%E5%98%B4%E9%B8%A5
本節目並非理財專題,僅提供升斗小民個人主觀意見,呼籲各位培養獨立自主思考意識,申購任何理財項目請詳閱公開聲明書。
【寶博士 x SoundOn】
⭐葛如鈞(寶博士)
Facebook▶️https://www.facebook.com/dAAAb
YouTube▶️https://youtube.com/c/dAAAb
Medium▶️ https://medium.com/@dAAAb
- - - - - -- - - - - -
📣訂閱SoundOn
APP▶️http://www.soundon.fm/download
Facebook⏩https://reurl.cc/1QxXzQ
官網▶️https://www.soundon.fm
Instagram▶️ https://reurl.cc/XX6Z3j
- - - - - -- - - - - -
🎵插曲:Music from https://icons8.com/music/author/marco-lazovic EARLY MORNING by MARCO LAZOVIC
🎵片頭:Music from https://icons8.com/music/author/savvier
Fame Inc by SAVVIER
🎵片尾:Music from https://icons8.com/music/author/NORDGROOVE Happy Step by NORDGROOVE
- - - - - -- - - - - -
主持:北科大互動設計系 專任助理教授 葛如鈞/寶博士
感謝:北科大創新思考與區塊鏈應用社群計畫補助|北科大互動設計系 https://ixd.ntut.edu.tw |北科大創新創業情報站 https://fb.com/ntuticorner
oracle between 在 pennyccw Youtube 的最佳貼文
After missing the past 11 games for the Golden State Warriors with a right ankle sprain, Stephen Curry returned in emphatic fashion Saturday night.
The two-time NBA MVP exploded for 38 points, shot 13-for-17 from the floor and nailed a season-high 10 of 13 3-pointers in 26 minutes to guide the Warriors to a 141-128 win over the Memphis Grizzlies.
"I just wanted that feeling again," Curry said. "It was pretty special.
"It felt like it was the first day of school again."
It was Curry's ninth 30-point game of the season, and his 10 treys were the highest total for any NBA player this season. Although it was nearly a month since he last played, Curry appeared not to have missed a beat.
"I was just happy to be back out there with my guys," he said. "You sit and watch for 11 games, you just wonder what it's going to be like to get back out there, and I finally got that opportunity. I really didn't know what to expect. I just wanted to get some good reps, get up and down, see how my wind was and, surprisingly, I think my body felt way better than I expected."
Warriors head coach Steve Kerr wasn't surprised as Curry enjoyed the second-most efficient game of his career when shooting 10 or more shots.
"Most guys you would say when they come back, maybe they'll struggle a little bit to find their rhythm, but you don't say that about Steph," Kerr said, "because all it takes is one and he can be feeling it."
Even though Curry was on a minutes restriction, it didn't restrict his offensive prowess. He did whatever he wanted. Whether it was driving to the hole, popping in transition or moving around screens, the Grizzlies simply didn't have an answer for him.
Curry played the first eight minutes of the game, producing seven points on two layups and a 3 from the top of the key.
Some 14 of Golden State's 37 assists occurred in the first quarter, a mark that was one assist off the franchise record for assists in a period.
If there was any doubt Curry wasn't his old self, a play late in the second quarter reminded fans of just how special he is. Curry passed the ball to Zaza Pachulia along the baseline and then ran behind the big man. Pachulia, without looking back, bounced the ball between his legs to Curry, and with the flick of his wrist the sharpshooter quickly got the shot off and drained a corner 3-pointer. Many of the fans in attendance at Oracle Arena jumped out of their seats.
oracle between 在 大鹿寶基Poke Youtube 的最讚貼文
《薩爾達傳說》全系列进化史 1986 - 2017 (The Legend of Zelda – Evolution from 1986 - 2017 )
塞尔达传说游戏是由宫本茂和手冢卓志设计,任天堂开发并于1986年首发的电子游戏。游戏设定于虚幻世界海拉尔,玩家操作主人公男孩林克,收集8块智慧三角力量碎片,从反派伽农手中救出塞尔达公主。游戏采用俯视视角,玩家必须操作林克在世界地图与数个迷宫中移动、击败敌人并探索沿途的秘密。**此影片不包括从新发售或制作的游戏。
The Legend of Zelda is a high-fantasy action-adventure video game series created by Japanese game designers Shigeru Miyamoto and Takashi Tezuka. It is primarily developed and published by Nintendo, although some portable installments have been outsourced to Capcom, Vanpool, and Grezzo. The series' gameplay incorporates elements of action, adventure, and puzzle-solving games. The Legend of Zelda is one of Nintendo's most prominent franchises. **This video does not include the rereleases and remakes of the series.
00:05 (NES) 1986 - The Legend of Zelda 塞尔达传说
00:37 (NES) 1987 - Zelda II: The Adventure of Link塞尔达传说 林克的冒险
01:13 (SNES) 1991 - The Legend of Zelda: A Link to the Past 塞尔达传说 众神的三角力量
01:53 (GB) 1993 - The Legend of Zelda: Link's Awakening 塞尔达传说 梦见岛
02:30 (N64) 1998 - The Legend of Zelda: Ocarina of Time 塞尔达传说 时之笛
03:09 (N64) 2000 - The Legend of Zelda: Majora’s Mask 塞尔达传说 姆吉拉的假面
03:51 (GBC) 2001 - The Legend of Zelda: Oracle of Seasons and Ages 塞尔达传 不可思议的果实
05:02 (GameCube) 2002 - The Legend of Zelda: The Wind Waker 塞尔达传 风之杖
05:38 (GameCube) 2004 - The Legend of Zelda: Four Sword Adventure 塞尔达传 众神的三角力量与四人之剑
06:14 (GBA) 2004 - The Legend of Zelda: The Minish Cap 塞尔达传 缩小帽
06:46 (GameCube/Wii) 2006 - The Legend of Zelda: Twilight Princess 塞尔达传 黄昏公主
07:23 (NDS) 2007 - The Legend of Zelda: The Phantom Hourglass 塞尔达传 幻影沙漏
08:00 (NDS) 2009 - The Legend of Zelda: Spirit Tracks 塞尔达传 大地的汽笛
08:35 (Wii) 2011 - The Legend of Zelda: Skyward Sword 塞尔达传 天空之剑
09:14 (3DS) 2013 - The Legend of Zelda: A Link between World 塞尔达传 众神的三角力量2
09:49 (3DS) 2015 - The Legend of Zelda: Tri Force Heroes 塞尔达传 三角力量英雄
10:21 (Nintendo NX/Wii U) 2017 - The Legend of Zelda: Breath of the Wild 塞尔达传 荒野之息
背景音乐: https://www.youtube.com/watch?v=2ao9SH8icM4
Background music: https://www.youtube.com/watch?v=2ao9SH8icM4
可關注我的頻道別錯過任何更新: https://goo.gl/E98SiD
Please subscribe to avoid missing any update: https://goo.gl/E98SiD