創新工場和BCG諮詢合作的「+AI改造者」系列:看看馬上贏如何在巨頭競爭下,用大數據驅動業務,實現傳統零售商和品牌商的雙贏。
改造者系列:科技巨頭下的AI企業制勝之道?-- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智慧在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
馬上贏是創新工場投資的大陸領先的快消行業大數據公司,其定位是中國快消品行業的風向標,零售監測的新標準,成為中國的「尼爾森」。通過信息化賦能小規模零售商,馬上贏打通一個個數據孤島,以大數據的方式挖掘零售數據的商業價值,為品牌商提供產品動銷數據與競品監控服務。
為了讓數據更好地服務於新品研發和上市,馬上贏引入了PDCA(Plan, Do, Check, Act)循環,通過數據說話指導快消品快速迭代,提升零售商銷售收入。
具體來說,品牌商可以在零售商的渠道內測試包括售價、外觀、營銷、陳列等要素,通過數據回饋指導新版本,實現往復循環。
在采訪中,馬上贏創始人猴哥(王傑祺)表示,垂直領域內的AI創新需要符合企業自身的需求,要在巨頭的基礎設施之上,基於更好的訓練集和更專業的垂直行業知識,不斷突破行業壁壘,優化垂直領域的AI創新。
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在零售領域,馬上贏致力於定義中國快消品零售監測行業的新標準,成為「中國的尼爾森」,通過免費為連鎖零售商提供市場情報和「零售數字化鐵三角」2,與零售商進行數據合作,將海量的線下快消品零售數據轉換成精准的市場洞察情報。
1 「改造者」 通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
2 「零售數位化鐵三角」指通過PDCA循環迭代的方法提升零售商銷售收入。P=Plan:52周企劃;D=Do:會員營銷;C=Check:BI看板;A=Act:改進。
■本期受訪嘉賓:猴哥(王傑祺)
馬上贏正在建設覆蓋線下門店最多的零售監測網絡,為連鎖企業免費提供BI看板、52周企劃3、會員營銷和市場情報,推進連鎖企業數字化轉型。
猴哥(王傑祺)是馬上贏的創始人兼首席執行官,清華大學學士,美國華盛頓大學碩士。他是原阿里巴巴集團資深產品專家,曾于美國UPS供應鏈部門擔任高級工業工程師。在創立馬上贏之前,他曾創業推出購物助手(如意淘),後被阿里收購。
3「52周企劃」指依托馬上贏的大數據AI技術説明零售商實現精細化管理。零售商可以瞭解一年中每周適合銷售什麼類目的產品,與陰曆節日、陽曆節日、節氣、特殊事件(如比賽活動)關聯,提升門店的銷售計劃能力。
■對談實錄
Q1 馬上贏為什麼選擇切入零售賽道?如何定義「中國的尼爾森」?
猴哥:馬上贏致力於定義快消品零售監測的新標準,做「中國的尼爾森」,為零售商和品牌商提供服務。面向零售商,馬上贏免費提供ABC服務,即AI、big data(大數據)、Cloud(雲服務),以換取訂單數據;面向品牌商,馬上贏基於零售商的脫敏數據提供大陸市場情報,賺取收入。
馬上贏發現,大陸的市場過於分散,零售的毛利又低,大量規模小的零售商缺乏足夠的IT費用以支援其獨立完成信息化應用,但他們對信息化的需求又是真實存在的。另一方面,品牌商有意願和能力為市場情報、動銷數據支付費用。馬上贏看到了零售商和品牌商的痛點以及購買力的巨大差異,嘗試通過為零售商和品牌商提供所需服務來提升整個行業的效率。
馬上贏一方面向零售商免費提供差異化的信息技術服務,按零售商的需求提供BI看板和市場情報支援,另一方面向品牌商提供產品動銷數據與競品監控服務。此外,馬上贏還在著重提升AI演算法和大數據中台數據處理能力,以便支援更多零售商和品牌商的數據服務需求。同時,這些技術優勢和服務支撐能力説明馬上贏建成大陸覆蓋範圍最大的即時零售數據監測網絡。對於馬上贏和客戶而言,這是雙贏。
在數據治理中,馬上贏需要做的是建立相對統一的內容體系,實現統一的度量衡。比如同一個條碼的商品在不同門店的名稱寫法不同,傳統方法是通過人工進行校驗和修正之後才能統一名稱入庫。馬上贏通過自己搭建的超1,600萬條碼的商品庫,使用AI演算法對零售數據做分類、清洗,並基於完善的商品知識圖譜體系標記商品屬性,再由BI看板提供數據洞察服務。馬上贏的這套全流程自動化體系,極大地提升了數據處理和情報產出的速度和效率。
Q2 相比數據咨詢商、科技巨頭等其他類別的競爭對手,馬上贏的差異化優勢是什麼?如果品牌方想自己做零售大數據,馬上贏怎麼應對?
猴哥:以往零售商想實現信息化必須高價購買專門技術公司的服務,只有少數資金充足的大零售商可以負擔得起,零售行業中數量眾多的中小型零售商往往望洋興嘆。而品牌方一般很難獲取到這些生意占比很大的中小型零售商數據,因而會尋求數據咨詢商的數據服務。但出於成本和利潤的考慮,數據咨詢商往往只服務最頭部的品牌商,在大陸可能只有幾百個品牌商能消費得起數據咨詢商的服務。相比之下,馬上贏合作的品牌商更加廣泛,從新銳品牌、區域性品牌到成熟品牌、頭部品牌,馬上贏都可以提供符合客戶需要的數據服務。
數據咨詢商從少數零售商那裏提取商品月度銷售匯總數據,再將數據整合為大盤情報,賣給少數頭部品牌商。但馬上贏從「激活生態」的角度出發,説明零售商提升數據運營能力,獲得大量一手銷售訂單數據,可以為品牌商提供更詳細的數據洞察服務。此外,馬上贏由AI賦能數據清洗和BI交付,從而可以提供即時的、更細顆粒度的看板,可以提供細到省級、地級市級、業態級、SKU級顆粒度的數據。
相比電商巨頭,馬上贏選擇線下快消品零售行業,覆蓋更多的線下零售商,涉及更豐富的業態,有大賣場、大超市、小超市、便利店、食雜店等等。在商品品類的選擇上,馬上贏暫不拓展美妝、服裝等電商渠道占比超過50%的品類,而選擇線上化率相對更低的品類,如食品、飲料、日用品。這些品類消費時效性高、頻次高、單價低,線上購物場景並不適合線下。
至於品牌方自己做零售大數據,馬上贏早前就思考過這個問題。我們和大品牌都聊過,如果建立品牌方自己的銷售追蹤網絡是否可行,得出的結論是不可行。一是單一品牌方來做大數據,做完了只能自己受用,成本攤下來很不合算,還不如投資AI企業,實現專業化分工;其次,品牌方還有一些技術壁壘解決不了,攻克下來只會對成本端造成更大的壓力,得不償失。
Q3 馬上贏在賦能零售商和品牌商的過程中遇到的最大挑戰是什麼?
猴哥:最大的挑戰來自於行業裏不透明的競爭——現在做AI的企業太多了,很多企業會虛報準確率,噪音特別大。
AI在每個垂直行業的落地需要很多行業知識,其次才是疊加AI演算法。但很多傳統企業對AI的期待特別高,導致市場上各種聲音魚龍混雜,每個企業都在講述「AI萬能」的故事。馬上贏不會激進地過度承諾,但這種冷靜和狂熱之間的衝突會帶來很多麻煩——當別的AI企業過度承諾其自動補貨的準確率高達95%的時候,馬上贏如果表示我們的準確率位於70%—85%的區間,傳統企業就會輕視我們的實力。現在,垂直行業裏缺乏行業組織或者專業機構來做客觀、公允的第三方普查。比如在圖像識別、自然語義處理領域,都有比較公認的訓練賽,大家用演算法的跑分說話,相對而言就比較客觀。落到垂直領域裡,每個企業自己報數據,很多時候就會有水分。
馬上贏曾經考慮把收集的數據脫敏之後貢獻出來,讓大家有一個公平的舞臺競技,但是很難運行起來。僅僅共享數據不足以激勵演算法團隊,需要行業組織定期舉辦競賽、活動等,或者像Netflix舉辦推薦演算法比賽,通過資本來激勵大家參與,僅僅靠社區運轉不起來。
Q4 你認為未來AI企業的發展趨勢是什麼?
猴哥:有能力的巨頭要持續加強行業的基礎設施,讓開發AI的人能有更好的工具,讓雇不起博士生的企業也能應用AI,實現技術普惠。同時,垂直領域內的AI創新需要符合企業自身的需求,AI企業要在巨頭的基礎設施之上,基於更好的訓練集和更專業的垂直行業知識,不斷突破行業壁壘,優化垂直領域的AI創新。我相信這是我們的生存之道——「科技巨頭靠算力,我們靠設計」。
同時,大陸的零售行業在洗牌,有很多更具備數據化思維的新品牌在躍躍欲試。以前是渠道經濟,在社區裏搶到點位就能有流量,未來是有技術、數據和管理能力的品牌才能從老品牌手中搶到點位。此外,隨著許多快消品牌逐步上市,出現資本外溢,更多的人會開始創業,疊加當前快消巨頭的二代交棒窗口,零售領域將有新一波浪潮湧動。我相信,未來的零售行業會更加擁抱數據,擁抱AI。
■要點回顧
1. 不只是技術層AI要有標準,應用層AI也需要標準。垂直領域應用AI需要由行業組織或龍頭企業牽頭制定公認的行業標準,從而促進AI企業公平有序發展,這也將反哺傳統企業,促使傳統企業的AI應用提質增效。
2. 「科技巨頭靠算力,AI企業靠設計」,結合巨頭提供的行業通用基礎設施和「改造者」特有的垂直領域數據集和算法,各取其長,方能最大化傳統企業應用AI的效率。
plan do check act 在 創業小聚 Meet Startup Facebook 的最佳貼文
事實上,戴明的 PDCA 概念,承自於華特.蕭華德(Walter Shewhart),也就是戴明的老師、美國統計學家。蕭華德認為,生產流程與「演繹法」(先將事物做假設,再驗證假設是否正確)十分類似,在設計時就先設想消費者需求,製造產品就是實施假設,而銷售就是驗證假設,如果銷售良好,就可以推論假設成立;反之,就要修正假設。
這種推演的過程,戴明把它稱為「蕭華德循環」(Shewhart Cycle)。1950 年,戴明將「設計、製造、銷售」循環加上市場調查的步驟,傳授給日本管理者、工程師。隔年,日本人將之簡化、濃縮為「計畫(Plan)執行(Do)查核(Check)行動(Act)」,也就是現在我們常聽到的「PDCA 循環」。
https://meet.bnext.com.tw/articles/view/47493
plan do check act 在 經濟部工業局 Facebook 的最佳貼文
💡改善問題的利器,您不可不知的PDCA循環!
無論你是否從事管理工作,是否有聽過「✨#PDCA循環式管理✨」呢,這是一套由美國著名的管理學家戴明所提出管理方式,他認為企業只要重覆執行Plan(計畫)、Do(執行)、Check(查核)、行動(Act)這四個步驟,找出問題並不斷檢討改善,將能達到永續發展的最終目標💖
#PDCA的步驟
1⃣Plan(計畫):建立明確目標,並制定相關計劃及確定必要程序。
2⃣Do(執行):執行計畫及程序,並收集必要的資訊。
3⃣Check(查核):與預期設計或計劃階段目標進行比對。
4⃣Act(行動):尋找適當方法縮減計劃目標和執行過程中的結果差距,使新的循環計劃更加完善。
#舉例說明
💁如何應用於石化廠中呢?
假設某石化工廠將於本年度推動目標為管線零洩漏率之計劃(即為P),於是工廠人員開始進行管線檢測、修補及汰換(即為D),於期中檢討時發現管線數量眾多及配合廠內歲修及運作等原因,達成管線零洩漏目標尚具差距(即為C),因此廠方設法增加人力及改變檢修作法(即為A)使得計劃更加完善。
plan do check act 在 Improve Your Work! (Plan-Do-Check-Adjust/Act Cycle) 的推薦與評價
... <看更多>