又有機會能夠和大家見面囉~~😎😎
這次我受邀參加10/19-20的MOPCON❗❗
和大家介紹一下 MOPCON,這是濁水溪以南最大的技術研討會,規模超過千人,地點在高雄。每到這個時節,南部各個技術社群就會集結起來一起舉辦,已經持續 8 年了。
MOPCON 官網 => http://bit.ly/30SveMT
時間:10/19 - 10/20
地點:高雄國際會議中心 ICCK
https://goo.gl/maps/ofr23X19YmPK4L3j9
今年 MOPCON 首次納入 Quant 的主題,MOPCON 之所以會根基在高雄,其中一個原因就是為了彌平南北之間的落差,『堅持濁水溪以南』一直是 MOPCON 的口號。為此今年的主旨為幫助打造飛速成長的通道,體現在研討會的四大亮點:
1. AI(智慧的擴展、自動化)
2. Quant(創造被動收入)
3. 敏捷(加速交流與溝通)
4. 職涯規劃(成長)與 Startup(創業)
首先來介紹一下 Quant 主題的五位講者:
第一位,就是我,演講內容自不必說,這也是近距離和我們FinLab接觸的機會唷!
第二位是王睿麒,瑞典商摩爾資產管理的量化總監、董事合夥人,有創辦一個免費的 YouTube 頻道,他講授的最大幅度分析法為大家建立正確的交易觀念,這次他會在 MOPCON 進一步告訴大家如何使交易觀念更清晰。
睿麒的 YouTube 頻道 => https://www.youtube.com/channel/UCnz2bP2TvQrWhxzVpQ-qRCA
第三位是黃正傳,程式交易Alex Huang 粉專的版主、期貨 H 模型發明人。他很早就因為發明出 H 模型財務自由了。而後也透過粉專、影片教授 H 模型的理論,最近更出書《高手叫我不要教的 H 模型》。這次他會帶大家來看程式與交易之間的鴻溝,要用量化來投資確實不是那麼簡單的。
Alex 的書 => https://www.tenlong.com.tw/products/9789869807234
第四位是顧家祈,台灣新創公司 hiHedge 創辦人暨 CEO,2016 年開始研發人工智慧交易員技術,是台灣第一家入選新加坡 StartupBootcamp FinTech 加速器的新創團隊。他會幫大家科普一下 AI,並說明 AI 用在投資領域,和過去傳統的 Quant 有什麼不同。
第五位是吳承宇,天鏡科技 AI 技術總監,天鏡科技是台灣做 Quant 的佼佼者,他們的產品是策略無限。承宇會講 Reinforcement Learning 在量化交易上的應用。
策略無限 => https://www.stranity.com.tw/information/landing
其他還有來自 AWS、微軟、聯發科、KKBOX、Verizon、Oracle 等 39 位講者涵蓋 AI、Mobile、Web、UI/UX、Agile、IoT、Startup、Remote Work 主題共 36 場議程 +18 場交流場次
15 個攤位滿足你求職、交友、互動的需求。
如此豐富的陣容,票價要多少呢?NT$800!只要 NT$800,你還不把握一年只有一次的參加機會嗎?
購票連結 => http://bit.ly/2LW35k5
「reinforcement learning介紹」的推薦目錄:
- 關於reinforcement learning介紹 在 FinLab財經實驗室 Facebook 的最佳貼文
- 關於reinforcement learning介紹 在 辣媽英文天后 林俐 Carol Facebook 的精選貼文
- 關於reinforcement learning介紹 在 Brett 林熙老師 Facebook 的精選貼文
- 關於reinforcement learning介紹 在 機器學習(Machine Learning) 介紹| Jason note 的評價
- 關於reinforcement learning介紹 在 【 Stanford 增強式學習開放式課程】... - Python 資料科學與 ... 的評價
reinforcement learning介紹 在 辣媽英文天后 林俐 Carol Facebook 的精選貼文
感謝東吳巨量資料學院的胡學長,貢獻了大數據英文用語的part 2囉!
這次胡學長focus在「機器學習篇」,以及介紹三個因為機器學習出現而發展非常快速的領域,分別是「文字」、「影像」和「音訊」。
大家不用覺得機器學習離我們很遙遠,像是youtube的推薦系統、google翻譯以及siri的背後通通都是使用機器學習的演算法哦!而且其實概念並不難,有興趣的孩子可以多探究!
——————————————————
🤖 胡哥+俐媽英文教室—機器學習篇 machine learning:
1️⃣ <機器學習四大類別>
* supervised learning 監督式學習
* semi-supervised learning 半監督式學習
* unsupervised learning 非監督式學習
* reinforcement learning 強化學習
2️⃣ <常見用語>
* cluster 分群
* classification 分類
* regression 迴歸
* model 模型
* parameter 參數
* predict 預測
* accuracy 準確率
* overfitting 過度擬合
* feature 特徵欄位
* label 目標欄位
* training data 訓練資料
* testing data 測試資料
* validation data 驗證資料
* standardization 資料標準化
* feature extraction 特徵提取
* dimension reduction 資料降維
3️⃣ <文字分析>
* text mining 文字探勘
* natural language process 自然語言處理
* text categorization 文本分類
* information retrieval 資訊檢索
* word segmentation 自動分詞
* machine translation 機器翻譯
* topic modeling 主題式分析
* sentiment analysis 文字情緒分析
* part of speech 文字詞性分析
* word embedding 詞向量轉換
4️⃣ <影像辨識>
* computer vision 電腦視覺
* image recognition 影像辨識
* image segmentation 影像切割
* image annotation 影像標注
* object detection 物件偵測
* face detection 人臉辨識
5️⃣ <音訊辨識>
* speech recognition 語音辨識
* signal extraction 訊號處理
* noise reduction 雜訊處理
* acoustic model 聲學模型
* time domain 時域
* frequency domain 頻域
* Fourier transform 傅立葉轉換
—————————————————
真是隔行如隔山,有你們提供其他專業領域英文,大家都彼此受惠!
感謝胡哥🙏🏼~
.
#俐媽英文教室 #俐媽英文教室徵稿中 #俐媽英文教室大數據篇 #謝謝胡哥 #東吳巨量資料學院 #大數據 #bigdata #AI #machinelearning
reinforcement learning介紹 在 Brett 林熙老師 Facebook 的精選貼文
#1月29日SAT寒密班
#2月3日SAT衝刺班
#3月26日SAT春密班
#SAT Verbal (EBRW) Class (SAT Evidence-Based Reading and Writing)
#SAT閱讀文法班介紹
Mid-semester SAT Verbal Assault:
This weekend course focuses on the SAT reading and Writing (Grammar) parts of the test. There are four main reasons I’ve designed this course:
1) In general, the verbal section is the hardest for students in Taiwan to master. This is especially true for the reading section. SAT Reading is famously difficult, even for native speakers. What’s worse, reading is not a skill that can be improved short term: it requires consistent practice over many months or even years.
2) Reading is the backbone of the entire SAT, including the math section, which does not test math in the way that it is tested in Taiwan. On the SAT, the math assesses reading ability much more than calculation. College Board’s philosophy is that it is very easy to memorize formulas, but it is much harder to read and understand the questions, and it is even much harder to think critically about them. The SAT, including the math section, is a test of critical reasoning. SAT math can be taught later in short courses, such as winter or summer courses.
3) In recent months, the SAT has greatly increased the difficulty of the reading section. That means that the officially released tests are much easier than what students will encounter on test day, and therefore the officially-released materials are not 100% representative of the current level of difficulty. For this reason, I’ve chosen non-official Reading passages from a variety of sources and levels of difficulty (10 books in total). This way, it is possible to push students to a higher level.
4) I’ve also included the grammar section because with prolonged training, the grammar section is the easiest one to improve. However, for most students, they need constant reinforcement of the rules of grammar to avoid making careless mistakes. That kind of focused training is a part of this course. Not only that, many of the skills used on the reading section overlap with those on the grammar section.
What I like about this course is that it provides a significant amount of practice: we all know that students learn best by first learning and then doing lots of practice to reinforce what they have just learned, followed by review and explanations. I’ve also designed daily homework: ideally, students will do a single passage in either reading or writing, 6 days a week. Spaced repetition is the key to long-term learning, and all students need to do is to discipline themselves to spend approximately 10-20 minutes every day on these passages. By doing so, they will build a solid foundation in the most efficient manner, without feeling like their workload has increased too much.
Best of all, the critical reasoning skills that students learn in this course will greatly assist them in their university studies and help them avoid the high failure rates that international students who rely on ultra-fast methods (速成) experience.
延伸閱讀 https://brettlindsay.blogspot.tw/2017/12/college-board.html
reinforcement learning介紹 在 機器學習(Machine Learning) 介紹| Jason note 的推薦與評價
cluster集群分析的目的是將資料分成幾個相異性最大的群組,而群組內的相似程度最高。 強化學習(Reinforcement Learning). 增強式學習的原理,藉由定義 ... ... <看更多>