量子計算對新一代物流管理的衝擊
文章來源:文/編輯部特約撰稿人
本文作者是編輯部特約撰稿人,隱姓埋名高深莫測,是台灣武功高強的獨行俠,曾職於國際快遞公司,擔任供應鏈分析與管理工作。經歷於各大物流企業與貨主企業,吸收各大門派功夫,並將其融會貫通,自創一派,爾後擔任各大企業供應鏈物流顧問工作,對台灣物流發展有獨特的眼光,總是能夠洞燭機先,布局未來。近年來,在研究與實踐中,不斷提出科技趨勢與產業創新發展策略,希望能為台灣供應鏈產業注入活水。(編輯部)
量子計算(Quantum Computing)是最早的理論基礎源自1969年,1980年代還處於理論探索的時代,2011年加拿大D-Wave公司推出全球第一套號稱商用量子電腦,但是到目前為止,世界各國所提出的量子電腦嚴格來說都只能做特定的計算,離真正的泛用型商業化(例如如預測氣候變遷、藥物最佳成分組合、材料配方最佳組合…等)仍有一段距離,不過猶如當年萊特兄弟首次飛行12秒,開創了人類商用飛行的序幕;量子計算再過幾年將會有更成熟的技術,對於物流界而言,量子計算應用於日益複雜的物流系統是可期待的。
關於量子計算的相關概念,目前已有許多其他文章有專文介紹,本篇不會再贅述這些基礎知識。對我們而言,我們可以這麼理解:假設有一台新的電腦,其運算速度是目前電腦的幾百萬倍,物流業可用這樣的電腦資源做那些改善?
演算法與資料傳輸的重要性
量子計算打開了物流中心與供應鏈系統「最佳化」的一扇窗,但是要能有效利用量子計算,關鍵還是相關數據的即時回報,以及演算法的設計。
物流的實務應用中,最著名的就是旅行推銷員(Traveling Salesman Problem)問題,也就是一個城市假設共有n個點需要去取件,從物流中心出發,我們希望每個點都只拜訪一次,最後再返回物流中心,要怎麼走可使總路徑最短。
假設拜訪點共有25個,就會有25X24X23…X2X1=25!(第一個點有25個選擇、第二個點有24個選擇…依此類推),這個值大概是「1.55X1025」。要在這麼多排列組合中找到最佳路線,假設電腦每一秒可計算「1013」個路線(每秒計算一兆次,已經是超級電腦等級),也需要「1.55X1012」秒,而一年有 3.1536X107秒,大約需要「5X104」年才能算完,就算是祖孫三代都不停歇,也無法完成此計算。
然而實務上的問題不光是如此:每台貨運車輛在都會間的最後一哩配送,每天至少都是20~40個點,而且以往 我們的運具種類少,因此在做路線最佳化時,大概只需考慮最佳路線這件事;現在(甚至以後),貨運運具種類越來越多,除了無人機、無人車,還有人類駕駛員的電動小車、甚至派送員騎的機車、自行車。
也就是說,如果有n個物流配送點,每個配送點可選擇m種運具,光是運具的排列組合就有「m x m x m .…= m2」種,再考慮最佳的路線求總運輸成本最低,而且這個計算尚未考量各運具所在道路的車流狀況,有時候算出的最短路徑說不定剛好就是塞車的路徑。
在演算法設計上,就好像要計算1+2+3…100的累加,我們可以很直覺利用一個100次的循環,每次把數字依序加入,最後得到結果;也可以利用「(100(100+1))/2」這個公式直接算出來;要計算哪條路徑最短,我們可以使用暴力破解(brute force)方式,先窮舉所有可能的路徑,逐一計算其運輸成本,全部算完後再決定最佳路徑,也可透過啟發式演算法,找到「近似最佳」的路徑。
演算法好壞有著天壤之別,如果使用較差的演算法,或許透過量子電腦可算出最佳解,但是需要耗用較多時間,這些計算時間都代表成本,如果要花很多錢計算去找出最佳解,反而減損了最佳解所帶來的實際效益,因此好的演算法才是最佳化的硬道理。
而在資料的即時回報上,這也是量子計算過程中需要管理者多關注的議題,因為屆時「計算力」已不是問題,問題是我們是否即時餵給中央系統正確的資料!
例如物流中心目前正在路上的各種運具,每分鐘需回報一次自己所在位置與狀態(包括車輛剩餘的油量、電量、目前載重),以及系統對於目前各運具所在位置與道路擁擠狀況,因此這些車輛上必須有相關的IOT設備,將訊息自動回報給物流中心後,物流中心彙整再批次送上雲端交給量子電腦計算。
可想見,我們所謂的即時,最多只能以「一分鐘」為單位,因為如果上傳的是五分鐘、十分鐘前的數據給中央系統,算出來也是五分鐘、十分鐘以前「應該」的最佳化狀態,拿五分鐘前的最佳化狀態指令作為物流資源的調度,恐怕會拉大實際運作的差距。
就拿「十分鐘」來說,十分鐘對一個物流系統而言,已經有很多事又變化,例如原本客人的訂單可能被取消、更改配送地點、緊急訂單加入、或是又有100個新的消費者下單…,而量子計算對於這類多變的動態環境,有機會把「物流最佳化」這件事真的做出來。先決條件就是,是否真的有即時把資料餵給系統。
資料來源:https://www.logisticnet.com.tw/publicationArticle.asp?id=1065
「traveling salesman problem」的推薦目錄:
traveling salesman problem 在 Lee Hsien Loong Facebook 的最佳貼文
Read with interest this breakthrough in the ‘traveling salesperson problem’. This famous computational problem has fascinated and obsessed mathematicians and computer scientists for decades.
Given a set of points, and the distances between them, what is the shortest route that a travelling salesman can take to visit all the points?
Finding an exact solution is possible, but takes a lot of computation. An approximate solution, guaranteed to be at most 50% longer than the shortest possible route, can be found much more easily. Is it possible to do better than this? E.g. can we efficiently find a route that is at most 49% longer than the best one? That has proved very hard to answer.
But this latest algorithm, devised by graduate student Nathan Klein and his advisers, managed to do this. It efficiently produces a route that is *slightly* less than 50% longer – by 0.2 billionth of a trillionth of a trillionth of a percent! But it is a major breakthrough, and will surely be improved on in time. In scientific and mathematical research, progress is gradual and cumulative. – LHL
traveling salesman problem 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
AI演算法模型於交通運輸市場應用
科技產業資訊室 (iKnow) - 何思穎、張小玫 發表於 2020年4月28日
由於大眾對汽車及駕駛員安全、運輸成本降低以及自駕車發展的關注度日益提升,導致人工智慧(AI)在運輸市場中快速成長。2017年市場價值為14億美元,預計到2023年將達35億美元,2018-2023年的複合年均成長率(CAGR)為16.5%。AI在運輸業中涉及電腦視覺(computer vision)、深度學習(deep learning)和自然語言處理(natural language processing)。
AI系統將會嵌入攝影機、雷達偵測(RADAR)感測器以及光達(LiDAR)等硬體設備,進而安裝在測試中的全自動駕駛車內,包括AI應用程式分為:人機界面(HMI)和先進駕駛輔助系統(ADAS)。AI產品分為軟體和硬體。2013-2017年以軟體主導了市場且預計2018-2023年期間也將持續主導地位,這要歸因於HMI應用程式中,軟體作為平台部署的情形成長,譬如Microsoft Azure。
交通運輸之AI演算法模型,如下:
類神經網路(ANNs)
說明:類人腦之神經網路,透過先前的經驗和變化權重的資料點(data point)來做出決策。類神經網路可以透過處理大量資料解決複雜的問題,檢測非線性關係。
用途:部份較複雜的全球定位系統(GPS)透過GPS、加速儀(accelerometer)和磁量計(magnetometer)搜集資料,利用類神經網路來決定運輸模式。類似於人類透過多個資料點的考量來「感受」距離。此外,在公共場合中應用類神經網路模型可以幫助預測公車抵達公車站的時間。
類免疫系統(AIS)
說明:該演算法的靈感來自於人類生物學,特別是人體如何對又稱為抗原的致病原(disease-causing agent)做出反應。AIS模擬了人體免疫系統的特徵抽取(feature extraction)、圖形辨識(pattern recognition)、學習和記憶。
用途:AIS在圖形辨識、異常檢測(anomaly detection)、分群(clustering)、最佳化(optimization)、規劃(planning)和排程(scheduling)。工程師利用AIS創建了即時調整支援系統,以在網路受到干擾時,幫助公共運輸網路找到解決方案。
模糊邏輯模型(Fuzzy Logic Model)
說明:模擬人類的決策制訂而來的,模糊邏輯指定資料於0到1之間的數值以展現不確定性。該系統已經使用了30多年,最適用於條件模糊且每個動作的結果都是未知的情況。
用途:模糊邏輯具有模擬曖昧且不明確的交通及運輸規劃問題的潛力,同時具備交通控制應用程式,因為模糊邏輯可以在十字路口發出時間訊號,決定汽車應該停留的時間長度。
蟻群最佳化演算法(ACO)
說明:該演算法模擬了蟻群的行為,就是螞蟻根據自己選擇較短路徑以及其他路徑的螞蟻透過費洛蒙分享經驗的選擇方式。該機制幫助螞蟻在兩點之間找尋最快路線。在電腦科學中,這個問題也被稱為旅行推銷員問題(Traveling Salesman Problem),其中一個推銷員必須拜訪X個城鎮,然後以最小的成本回到起點。
用途:蟻群演算法可以用於選擇更好的公共交通巴士路徑,也可以用於沿途接客的共乘平台,如:Uber Pool。
蜂群最佳化演算法(BCO)
說明:與ACO相似,該算法以蜜蜂的集體覓食運動為例,體現了有組織的團隊工作、協作和緊密溝通。蜜蜂在蜂巢內的運動幫助科學家最佳化汽車的移動。
用途:蜂群演算法可以用於最佳化旅行路徑,減少通勤時間、等待次數、延遲以及空氣/噪音汙染。如:AirB&B
企業合資及併購活動方面,大型汽車OEM製造商正收購具技術取向的新創產業,並且從自動駕駛卡車及其他商業用車輛切入市場。譬如,特斯拉於2017年11月推出具有半自動功能的電動卡車(semi-truck)。此外,nuTonomy Inc.、TuSimple Inc.和Nauto Inc.等新創企業也正著手製造配有自動駕駛系統的商用車和客車。因此,製造商跨業整合會越來越多及著重安全性考量的自駕車技術,正在擴展市場的進步。
附圖:圖、AI演算法模型於交通運輸市場應用
圖、AI在全球運輸市場中價值成長
資料來源:https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=16578
traveling salesman problem 在 How can the A* algorithm be applied to the traveling salesman ... 的推薦與評價
... <看更多>
相關內容