達到L5自動駕駛車仍需10年,採取以靜制動策略才是聰明之道
目前看起來,特斯拉的電動車的自動駕駛等級應該在Level 3,而Wamyo的自動駕駛車在天氣良好的情況下,應該可以達到Level 4。如果要真正達到Level 5的全自動駕駛,或許是一個夢。至少從現在的觀點來看,人們夢想中的自動駕駛車尚未到來。
許多分析師根據現在自動駕駛車的發展情況,紛紛認為人們距離自動駕駛車的理想仍需要十年以上的時間....
http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=16260
同時也有2部Youtube影片,追蹤數超過0的網紅7Car小七車觀點,也在其Youtube影片中提到,新在哪裡? ●維持單一車型設定,售價為新台幣 105.9 萬元,相較於舊款車型,售價微幅提升 4 萬元。 ●導入全新外觀,車頭換上立體式格紋鍍鉻水箱罩。 ●頭燈與尾燈導入新式的 LED 日行燈組。 ●輪圈加大至 17 吋的配置(舊款為 15 吋)。 ●搭載 Hyundai SmartSense 智能...
自動駕駛等級4 在 李開復 Kai-Fu Lee Facebook 的最佳貼文
Momenta完全無人駕駛首次曝光!城區道路混行無接管,遭遇逆行也不怕,特斯拉Waymo路線二合一
本文來源:量子位微信公眾號 QbitAI 作者:李根
…………………………………………………………
Momenta(現在)是一家怎樣的公司?
宏觀印象:學霸創業、中國無人車獨角獸、賓士母公司戴姆勒加持、自動駕駛第一梯隊玩家……
產品業務:高速場景方案產品、L4級自主泊車產品交貨、最高等級高精度地圖資質……
一千個維度有一千種答案,但也頗顯盲人摸象。
只是從今往後,Momenta的技術路徑開始完整清晰。
在通往自動駕駛實現大道上,之前有漸進式的特斯拉,也有一步到位的Waymo,天下方案,莫過於此。
而現在,Momenta集二者之所長,避二者之所短:
Tesla+Waymo,就是Momenta。
▌完全無人駕駛發佈
12月26日,Momenta對外正式發佈L4級無人駕駛技術MSD (Momenta Self Driving),開始支持城市內完全無人駕駛場景。
如果說2019年來Momenta發佈的前裝量產產品Mpilot,更像是特斯拉方案。
那麼現在,MSD上馬,則顯出Waymo路線雄心。
萬萬沒想到,自動駕駛業內一度紛爭的兩種路線,如今讓Momenta實現二合一。
但MSD究竟是一套怎樣的方案?
區別於量產前裝方案,Momenta完全無人駕駛方案中最明顯不同在於多了雷射雷達。
在其測試車中,共搭載12個攝像頭,5個毫米波雷達和1個雷射雷達。整套系統感測器方案以攝像頭為主,雷射雷達為輔,多感測器冗餘。
而且Momenta強調,除去雷射雷達,方案中的硬體選型與前裝量產保持一致——這也是Momenta“兩條腿”向前的關鍵考量,後面還會詳細講到。
不過,說一千道一萬,無人駕駛——還得以身試乘看一看。
MSD方案的試乘,選在了Momenta(蘇州),地點毗鄰蘇州高鐵北站,屬城建頻繁區域,路線全程約12公里,沿途經過30餘個紅綠燈路口:
既包括無保護左轉等典型場景,也有非機動車混行、立交橋下長路口等複雜路段。
路線中還有多處工地,也有學校、居民區、寫字樓、商業中心等生活場景。
符合Momenta該方案目標所指:城市區間內,完全無人駕駛。
而且路段基礎設施也沒有過V2X改造,依然拼的是單車智慧實力。
車流交匯交互,也是最有意思的場景。MSD方案雖初發佈,但智慧程度已有老司機風範,在試乘的幾次交互場景中,有讓行、也有選擇先過,並不基於單一規則。
同車試乘的Momenta研發總監夏炎解釋,這能體現MSD在預測規劃方面的實力和學習能力。
不過整體試乘而言,因為城市區間不同高速場景(無人車混行)和停車場(低速),Momenta的AI司機給人的印象是:安全第一,寧慫不偏激。
比如在蘇州相城道路,會出現不規則的異型車——挑戰自動駕駛系統的感知識別。
其實從當天道路實際情況來看,系統完全可以“偏激”一些,讓路不減速通過。
但安全第一思考下,Momenta工程師打造的該系統,在交通中不確定性較大的情況下,先減速,甚至刹車,確保交互雙方的安全。
而且相比人類老司機,MSD雖初生牛犢,但也展現出不凡實力。
遭遇人類司機深為苦惱的大貨車時,既要對大貨車的載貨品類多樣、形態各異準確感知,還要對大貨車行為上的激進行為有應對:
MSD跟隨慢速行駛的大貨車一段時間後,“決定”變道超車,但在超車過程中仍保持對貨車一定的安全距離,通過接近路口的實白線後才拉大橫向距離超車,保證了超車過程中的安全性。
▌完全無人駕駛新速度
12公里左右里程,按道路交規限速行駛(40公里每小時為主),近40分鐘,歷經城區內各種場景——有臨時施工、有不規則車輛,還有逆行,但全程無接管。
這樣的完全自動駕駛能力,起步最早的穀歌用了近十年,百度從開始研發到落地也超過5年,一眾自動駕駛新勢力從無到有也走過了快3年……
雖然深度學習、大數據和大計算帶來的指數加速,已再明顯不過。
但得知Momenta的速度,依然讓人不可思議:
50人左右的團隊,5個月左右的時間。
沒錯,從今年下半年交貨量產自動駕駛產品後,Momenta才開始囤積重兵,依靠公司長期的技術和數據積累,以及量產自動駕駛和完全無人駕駛通用的平臺支持,開始攻堅完全無人駕駛。
至於能夠達到城區開放道路全程無接管,之前行業內最快的友商也差不多用時1年,且積累了至少十萬公里以上實際路測里程。
所以Momenta之速,背後究竟有“引擎”?
Momenta CEO曹旭東認為,與他們內部看問題的角度、方法和戰略選擇有關。
Momenta創辦,從一開始就明確目標,要打造自動駕駛大腦。
這並非傳統汽車產業內“換輪子”,而是行業開始AI化變革後,供應鏈環節中的新機會。
汽車產業鏈中:
有最基礎的Tier1一級供應商,如博世、大陸,在系統層面、硬體層面提供產業支援。
再往上則是OEM廠商,賓士、寶馬、豐田……即車廠。
還有智慧化的基礎——計算晶片,如TI、NXP、瑞薩和英偉達。
最後,核心新增的玩家,一方面是提供出行網路的滴滴Uber等,另一方面則是提供自動駕駛所需核心演算法和軟體的技術公司。
比如定位“自動駕駛大腦”的Momenta,就處於這一層。
但即便如此,如何實現完全自動駕駛,如何最高效擁抱未來,也沒有清晰明確的答案。
至少在打造自動駕駛大腦這件事上,特斯拉方案和Waymo路線一度不可調和。
▌兩個路線的爭論
所謂特斯拉路線,是按照自動駕駛等級的劃分,從低級往高級不斷升維,通過量產汽車對場景、數據和演算法的反覆運算,最終實現完全無人駕駛。
而且正是因為堅定量產路線,也為了最低門檻獲取數據、場景和功能回饋,偏執狂馬斯克完全依靠攝像頭方案、不使用價格昂貴的雷射雷達。
所以即便2019年發佈為完全自動駕駛而生的FSD硬體,外界也不相信馬斯克2020百萬RoboTaxi的豪言。
而Waymo路線,則認為只有從一開始L4才能實現RoboTaxi。該路線中,人機共駕的高級輔助駕駛被認為有天然Bug——既要機器輔助駕駛,又要人類在緊急時刻接管,顯然不靠譜。
於是Waymo從2009年正式推動後,逐漸明確了實現方式:
原型車、規模化路測、在豐富場景中不斷反覆運算,區域內落地,終極場景是讓無人車行駛運營在任何時間、任何地點和任何場景。
但Waymo路線中,最難的是無窮無盡的“長尾”問題,現實中總會有出乎預料的新場景、特殊挑戰,這就要求自動駕駛系統足夠聰明、且學習反覆運算得足夠快。
所以概括而言,二者優缺點都很明顯。
特斯拉方案:想依靠低成本感測器方案不斷升維,難且有道德挑戰;但好處是數據“眾包”,能在量產中獲得現金流和數據流程。
Waymo路線:希望一己之力不斷擴大無人車隊規模,最終真正實現完全落地,險且依賴融資燒錢;而好處是安全性相較而言更可控,不用把車主當小白鼠。
但如今Momenta之行動,所謂“兩條腿”戰略,卻實現了特斯拉和Waymo路線的二合一。
即,通過量產自動駕駛產品獲得海量數據,持續研發數據驅動的核心演算法,打造閉環自動化工程體系,發揮數據價值,高效反覆運算數據技術,最終實現完全無人駕駛。
同時,MSD的技術框架中不同感測器的感知演算法相互獨立冗余,並非完全依賴某一種感測器,因此目前量產感測器收集的數據,如視覺、地圖、軌跡數據等可以無縫應用並有效助力MSD演算法提升。
最終,一個數據流程和技術流的閉環搭建完成,量產自動駕駛和完全無人駕駛,真正互相補益。
但為何能打通?又為什麼是Momenta?
一切要從Momenta創立之初對自動駕駛的認知說起。
▌終局視角思考無人車
Momenta 2016年創辦,當時就分析過特斯拉模式和Waymo路線。
但並非為結合二者而生。
曹旭東回憶,從一開始就希望從本質出發、從終局角度思考問題。
Momenta的思考中,自動駕駛的終局,一定是L4級以上,不需要方向盤、不需要人類司機。
但要實現這個終局,結合深度學習為核心的AI新浪潮,兩大要素就格外關鍵:
一是數據驅動。
二為海量數據。
之所以要數據驅動,是因為完全無人駕駛中的長尾問題——幾乎是難以窮盡的。
唯一的可能性只有數據驅動,自動化解決大部分的問題,例如99%問題。
所以Momenta內部,“架構師”文化興盛,他們目標是架構能夠自動化解決問題的系統。
在當前系統中,Momenta的 “閉環自動化”方法論就已發揮作用,通過建立對問題自動化發現、記錄、標注、訓練、驗證的閉環過程,為技術和數據提供自動化的反覆運算能力。
而關於海量數據,這是數據驅動的原料和前提。
之前有粗略估計,實現完全無人駕駛,需要100萬輛車跑一年,每輛每天跑10小時以上。
如此海量數據,完全依靠自建車隊採集,幾乎不現實。
量產自動駕駛數據流程能夠助力完全無人駕駛,源自統一量產感測器方案。
MSD感測器方案包括視覺感測器、雷射雷達與毫米波雷達,均覆蓋360°範圍,該感測器方案子集與量產感測器方案保持一致。
所以理解了無人駕駛終局的兩大要素,或許也就不難明白Momenta此次談及的兩條腿戰略:
一條腿是量產自動駕駛;
另外一條是完全無人駕駛。
量產自動駕駛,人車共駕,以人為主,但解放人類在高速環路、停車場等場景下的駕駛時間,提升駕駛安全性及駕駛體驗。
而且通過量產自動駕駛,實現海量數據獲取——學特斯拉又超乎其外。
進一步,量產自動駕駛可以給完全無人駕駛帶來數據,通過數據驅動的方式,去自動化地解決99%的問題。
未來隨著量產產品上市,像 “活水”一般源源不斷注入MSD,推動MSD演算法不斷升級,使得完全無人駕駛系統不斷進化。
這是數據流程上的打通。
而通過完全無人駕駛,還能給量產自動駕駛回饋技術流,不斷提升體驗和能力,讓量產自動駕駛持續進步,提升行業份額。
當然,數據流程和技術流形成閉環,聽起來不算稀奇。
但真正實現這樣的戰略並不容易,關鍵是量產感測器方案的一致性、互補性,並在量產自動駕駛戰略中真正快速低成本交貨、落地。
這也是特斯拉和Waymo難以跨公司二合一的原因。
另外,作為創業公司,在數據流程和技術流閉環之外,靠融資燒錢顯然不可持續,必然還需要現金流。
所以Momenta創辦3年來,先在量產自動駕駛發力,實現數據流程和現金流方面的驗證,然後發力完全無人駕駛,同時著力於打通兩者之間的數據流程和技術流。
現在,完全無人駕駛方案發佈,數據流程和技術流的戰略雛形形成,現金流也能讓公司不受輿論和資本市場變化而左右。
曹旭東說, 目前Mpilot 和MSD的原型發佈,標誌著兩條腿的雛形期形成。預計到2019年-2024年,量產自動駕駛大規模上市,以及MSD真正的完全數據驅動,完全自動化,則是“兩條腿”戰略得到驗證的時刻,也是戰略的成型期。
▌道阻且長,行則將至
不過,也還沒到一腳定江山的時刻。
雛形初現,一切還只不過是開始。
更何況這樣的戰略完整披露,一方面會面臨質疑,另一方面也有被複製的風險。
但曹旭東並不擔心。他說:“戰略沒有優劣,戰略是選擇。這個戰略有其優點,也有難點和挑戰。我們在選擇戰略同時,也必須克服和解決其背後難點。我相信,戰略發佈後,看到的不是抄襲,更多的是爭議。在戰略執行時,遇到困難,可以選擇繼續走下去,也可以去選擇其他戰略,但我們選擇迎難而上。道阻且長,行則將至。”
按照Momenta的說法,執行層面主要面臨兩個維度的挑戰:包括技術難度和商業難度。
技術層面的難,例如數據流程的打通。曹旭東認為,行業主流都是以雷射雷達為主的技術解決方案,但Momenta是以統一量產感測器為主,需要打通量產自動駕駛到完全無人駕駛的數據流程,而他們在其中做了大量的技術創新。
在矽谷拜訪時,曹旭東也講到Momenta的戰略和已解決的技術難題,得到很多行業專家的認可和欣賞,因為Momenta在做原始的技術創新,而不是簡單的複製跟隨。
商業層面的難,包括如何深入行業、理解客戶,如何拓展能力邊界及更好的服務市場。
曹旭東進一步解釋:“To B是系統性的業務,面對的是一個組織,需要得到方方面面的認可。一線客戶都有很強的技術能力和很高的技術標準,需要經過非常嚴格的技術評測。而我們經過層層驗證,最後獲得了客戶的認可,進入了量產體系。”
Momenta也有相對長遠的完整時間表。
他們內部,認定2016年-2019年是戰略雛形期,2019年-2024年是戰略成型期。
然後2024年-2028年才是真正的戰略爆發期,那時候在完全自動駕駛“這條腿”上將加速趕上Waymo。
只是現在開始,自動駕駛“面壁者”Momenta,戰略意圖一覽無餘。
▌告別盲人摸象
作用力也才剛剛開始。
從Momenta自身來說,徹底告別被“盲人摸象”狀態。
高精度地圖供應商?高級輔助駕駛玩家?量產自動駕駛交貨……
都不準確。
大道至簡,Momenta(現在)是一家怎樣的公司?
Momenta = Tesla + Waymo。
而且這種結合帶來的新場景新技能,還可能不是線性相加。
或許也是聚變反應。
比如特斯拉一直是從車角度提供方案,Waymo則是運力技術維度……
但二者結合,就是完整軟硬體集合體,載人載貨,私家車共用車,都有了可能。
簡而言之,能做的更多,可以做的更多,新價值已經展現,新邊界也就要重勘。
自然還會進一步帶動行業新格局重塑。
自動駕駛發展中,特斯拉方案和Waymo路線,一次次被提起,一次次被模仿,一次次被對標。
這樣的新玩家新勢力,無論中美,都可以舉出很多。
但今日之Momenta,在理論上真正達到二合一,並且驗證了可行性。
於是,之前衡量自動駕駛的時間表,曾經理解Momenta的框架,可能是時候刷新了。
▌One more thing
雖然Momenta是中國自動駕駛的獨角獸,但作為Momenta的船長,曹旭東最關心的並不是公司的估值。
他認為商業世界一切有為法,一定離不開價值規律本身,估值並不需要過分關心。
他關心什麼?
作為CEO,他說核心還是人,組織的學習、進步和提升。
這位Momenta創始人,今年來自上而下改變了一件小事:不再把“創始人”放在對內對外的任何地方,僅以職務——CEO示人。
他解釋說,Momenta正在最大限度通過組織變革、文化塑造,形成合夥人文化。
合夥人不分加入先後,不論年齡資歷,核心關注的是技術、貢獻和志同道合。
他希望以此吸引最頂級的牛人,讓更多有識之士加速自動駕駛終局到來。
《道德經》裡說,夫唯不爭,故天下莫能與之爭。
但真正能邁步實踐者,少之又少。
如今,無人車獨角獸Momenta,宣示兩條腿,放下“自我”,立志要做推動終局實現的那個玩家。
這就是Momenta。
自動駕駛等級4 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
對自駕車來說,5G 網路是必要條件嗎?
作者 雷鋒網 | 發布日期 2018 年 10 月 11 日 7:30 |
5G 網路的忠實粉絲相信,這項新技術不但提供比 4G 網路更快的連接和數據下載能力,還能處理更大量的通訊任務,而正一步步走向成熟的自駕車,未來也需要 5G 網路的「輔佐」。不過,自駕車缺了 5G 就真的「活不下去」嗎?
一直以來,電信業都對未來有個預設,那就是自駕車會透過網路採集並接收訊息,這個過程必須在電光火石間完成。
業界還為這個概念取了一個名字──V2X(Vehicle-to-everything,即車與外界的訊息交換)。
為了達成這個目標,車輛的探測能力必須涵蓋一切盲點並提前阻止事故發生。也就是說,車輛行駛時,車上感測器需要採集三大資訊:
天氣和路況。
是否有事故發生。
車輛周圍的障礙物和移動物體。
一旦完成資訊採集,這些數據不是由車載電腦處理並即時決策,就是回傳到雲端處理後再指導車輛下一步動作。
比人類更聰明
假設車輛 A 正以 100 公里時速在高速道路奔馳,突然車輛 B 出現在車輛 A 前方。為了避免事故,兩輛車的感測器必須相互交流,車輛 A 趕緊煞車,車輛 B 則急加速防止事故發生。
也就是說,工程師不但想讓自駕車與雲端相連,還想讓它們之間互通有無。
「我們得弄清楚,訊息在感測器之間傳遞需要多長時間,當然還要考慮到傳回車載電腦和電腦分析處理並做決定的時間,這個過程必須比人類駕駛更快,即低於 2 毫秒。」諾基亞公司的 Jane Rygaard 解釋。「我們需要一套網路來達成這個目標,而 5G 就是最佳選擇。」
Ordnance Survey(英國地形測量局)也認同這觀點,「你按下電燈開關開燈時,瞬間就照亮屋子,自駕車我們也需要這樣的速度,車輛在遇到情況時必須迅速停下來。因此高頻 5G 訊號在這裡就成了必要條件。」
不過,車輛之間相互交換「情報」還不夠,瑞典電信巨頭愛立信認為發生重大災害或嚴重塞車時,當局應該發給自駕車及時提醒,警告它們切換到其他路線。
為此,愛立信還專門聯合 Volvo 和 Scania(卡車)在斯德哥爾摩進行測試。如果發生恐怖攻擊,警察有能力讓被劫持的聯網車輛徹底停下來,防止它們進入核心區域造成更大的傷害。
自動駕駛等級
美國汽車工程學會對自駕車的分級恐怕大家已很熟悉了,未來車輛將一步步升級,直至達成 Level 5 等級的全天候全地形自動駕駛。
市場研究機構 Gartner 認為,Level 3 和 Level 4 自駕車今年底就會小批問世,到 2025 年,全世界自駕車保有量就會突破 60 萬輛。
毫米波天線
Ordnance Survey 認為,自駕車很有可能支援 5G 網路,但最初它們肯定是部署在已經過詳細測繪的地理區域,比如人口密集的城市。
眼下,英國政府就在製作精細的英國 3D 地圖,將視覺化呈現所有永久固定的物體,比如建築、街道標示牌和大橋等。當然,臨時搭建的物體如聖誕裝飾、懸掛的花籃和吊車,也會出現在 3D 地圖,以上種種事物可能都會阻隔 5G 訊號,影響自駕車的表現。
如果要保證自駕車與行動網路無縫連接,建築現有的 4G 天線恐怕不夠用,必須每隔 200~300 公尺就安裝一些小型毫米波天線。
「現有的行動基地台可能需要增加 60 或 70 個毫米波發射器和接收器。」Ordnance Survey 管理顧問 Richard Woodling 解釋。
雖然全自動駕駛一時半刻還無法落地,但福特希望能在 2021 年推出 Level 4 的自駕車。
為了達成這個目標,福特正努力繪製邁阿密的一山一水和一草一木。此外,福特的模擬軟體也頗具水準,能幫助車輛分析當前形勢,遠離不安全的後果。
不過,Woodling 依然不看好自駕車短期內「占領」城市。「我覺得自己有生之年都看不到自駕車『占領』城市。」他說,「你根本不可能把它們塞到倫敦,然後信心滿滿地說每個人都能使用自駕車了,我們離這項技術的成熟還有一段距離。」
5G 還是 Wi-Fi?
一些業界人士也不看好自駕車與 5G 技術的「聯姻」。
鑑於汽車行業已在推薦聯網汽車了,未來有可能還會繼續沿用現有的 4G 網路,然後再用 Wi-Fi 輔助。
「即使在沒有網路訊號的地方,自駕車也必須擁有百分之百的安全性和可靠性。如果必須做到這樣的技術參數,幹嘛還要 5G 網路呢?」諮詢師 Prof William Webb 說,他還寫過一本名為《5G 的神話:當視覺與現實脫鉤》。
「在我看來,C2C 通訊確實意義重大且能增強車輛安全,而 4G 或 Wi-Fi 就能 Hold 住這個艱鉅任務,別忘了這些車輛是直接連線。」
高通歐洲分部主席 Enrico Salvatori 卻不同意 Prof Webb 的觀點,高通的產品已是全球 33 家汽車製造商的標配。
「Wi-Fi 能解決短程通訊的問題,而 V2X 就複雜多了,它能讓車輛連上網路、城市、雲端等,因此你必須制定囊括所有端對端應用的標準。」Enrico Salvatori 解釋。「必須能在任何距離保持連接,無論遠近。」
福特倒是很淡定,認為自己正好站在這場爭論的中間。
「我們曾是 Wi-Fi 的支持者,因為當時只有這種技術最好用。」福特聯網汽車平台與產品高級主管 Don Butler 解釋。「但現在我們相信,行動網路比 Wi-Fi 更適合 V2V 通訊。」
Gartner 也認為 5G 未來會對自駕車產生影響,但還有個問題。「5G 確實會對自駕車的發展和應用至關重要,但要先講兩個限定條件,一是網路必須是真 5G,而車輛必須有全自動駕駛能力。」 Gartner 報告寫道,「現在,這兩個條件恐怕一時半刻都做不到。」
資料來源:https://technews.tw/…/is-5g-necessary-for-self-driving-cars/
自動駕駛等級4 在 7Car小七車觀點 Youtube 的最佳解答
新在哪裡?
●維持單一車型設定,售價為新台幣 105.9 萬元,相較於舊款車型,售價微幅提升 4 萬元。
●導入全新外觀,車頭換上立體式格紋鍍鉻水箱罩。
●頭燈與尾燈導入新式的 LED 日行燈組。
●輪圈加大至 17 吋的配置(舊款為 15 吋)。
●搭載 Hyundai SmartSense 智能安全科技,提升至 Level 2 半自動駕駛等級。
●內裝方面,加入新式三幅式平把方向盤,中控台整體進行大幅度更新。
●新增 8 吋多媒體主機支援 Android Auto、Apple CarPlay 智慧手機連結功能。
●新增觸控式空調介面以及新式冷氣出風口造型。
●新增 EPB 電子式手煞車及 Auto Hold 自動駐車系統。
●動力系統保持不變,但平均油耗從 23.1km/L 提升至 24.7km/L。
#Hyundai
#IONIQ
#hybrid
#節能與駕馭樂趣都兼具
Hyundai 在 2016 年分別於南韓、歐洲、北美等市場推出了以相同底盤打造同時擁有三種不同動力形式 (EV、Hybrid、Plug-In Hybrid) 的 IONIQ 新世代節能車,以「環保節能車也應該要有純粹駕馭樂趣」的思維挑戰主要對手 Toyota Prius。總代理南陽實業於 2017 年正式導入國內市場,雖然銷售量無奈於品牌形象沒有重大的突破,但也讓國內消費者了解到這款來自韓國綠能車的獨特魅力。
延伸閱讀:https://www.7car.tw/articles/read/70447
更多車訊都在【小七車觀點】:https://www.7car.tw/
【七哥試駕都在這邊】:https://reurl.cc/O1xnWr
--------------------------------------
「小七哥」親自實測嚴選的商品都在【七車坊】
https://shop.7car.tw/
台灣商用車專屬網站【商車王】
https://www.truck.tw/
記得訂閱追蹤YouTube唷 》》》
7Car →https://reurl.cc/pdQL7d
7Car新聞頻道 →https://reurl.cc/MvnRrm
台灣車文庫 →https://reurl.cc/ar61QQ
自動駕駛等級4 在 研究生 Youtube 的精選貼文
上週,特斯拉的股票衝上去,
成為美國最有價值的汽車公司。
剛好這個時間點,想跟大家談談自動駕駛碰到的其中一個瓶頸:
「道德兩難」的問題。
當人開車面對「怎麼做都會有人受傷」的時候,
必須要在很短的時間內做出抉擇,
在路上沒有人能等你。
而自動駕駛,是以車內的演算法來做出決策,
必須要有「足夠的數據」以及「了解車主」的判斷才行。
但這都不是件容易的事情,
最後的法律責任,是否能夠讓「演算法」來承擔呢?
這一集研究生,來跟大家從特斯拉談談自動駕駛的道德兩難。
會談到:
1. 特斯拉 — 美國最有價值的汽車公司
2. 自動駕駛的難處
3. 經典哲學問題 -電車問題
4. 法律,人性,演算法
--
「研究生 Talk」Podcast:
https://yanjo.soy/Talk-Podcasts
記得訂閱研究生的 Youtube 頻道:
http://bit.ly/2Cmb190
研究生的臉書在這邊:
https://www.facebook.com/pointsjourney
還有也要追蹤研究生的 IG:
https://www.instagram.com/pointsjourney
#特斯拉
#自動駕駛
#電車問題
自動駕駛等級4 在 自動駕駛等級4在PTT/mobile01評價與討論 的推薦與評價
自动驾驶 汽车,又稱無人駕駛車、電腦駕駛車、無人車、自駕車,為一種需要驾驶员辅助或者完全不需... 等級3:駕駛者需隨時準備控制車輛,自動駕駛輔助控制期間,如在跟車時 ... ... <看更多>
自動駕駛等級4 在 自動駕駛等級4在PTT/mobile01評價與討論 的推薦與評價
自动驾驶 汽车,又稱無人駕駛車、電腦駕駛車、無人車、自駕車,為一種需要驾驶员辅助或者完全不需... 等級3:駕駛者需隨時準備控制車輛,自動駕駛輔助控制期間,如在跟車時 ... ... <看更多>