高中數學證明題 在 1+2+3+...=-1/12 ? 居然能證明?!嚇到吃手手!! 的影片資訊
到底是數學出了問題 還是我們出了問題XD ....................................... IG: charmingteacherbonnie (Bonnie老師) ...
Search
到底是數學出了問題 還是我們出了問題XD ....................................... IG: charmingteacherbonnie (Bonnie老師) ...
微積分教室也富奸太久XDDD 這次是粉絲許願系列 帶你輕鬆理解除法微分公式 ........................................ Hello!我是Bonnie,大家最害怕的...
【摘要】 今天這集一口氣講了不少東西,從韓信點兵到同餘符號的介紹,再到中國餘式定理,然後再到 RSA 密碼系統的介紹,最後再以中國餘式定理在 RSA 上的應用。這集一開始很輕鬆,但後面很陡,這也是我做...
【摘要】 這就是我想做的那種高中數學,從某個高中數學主題直接拉拔到大學數學相關主題,用高中生也能聽得懂的語言,把大學數學從神壇上拉下來。欸不是,是把大學數學介紹給喜歡數學的高中生聽😉 【本系列其他影...
這個禮拜延續 3/14 的圓周率日 接下來連續四天都是證明題 含上週五的證明題 總共五題證明 僅限給喜愛數學的同學們 還有想鍛鍊推理能力的朋友們 如果喜歡這部影片 可以的話幫我按個讚和分享給更多人 ...
數學愛好者 一定超愛這類型題目 我的觀察啦 科科 不過如果你想鍛鍊自己的邏輯推理能力 這題真的是一個很好的範本 如果喜歡這部影片 可以的話幫我按個讚和分享給更多人 謝謝~ 這個系列將會以解數甲微...
繼續題目沒給收斂的數列極限問題 這題不用像之前那樣費功夫證明 因為題目本身數列的收斂性 可以靠別的數列來支持 至於怎麼操作 就看你有沒有看穿一切了 如果喜歡這部影片 可以的話幫我按個讚和分享給更多...
如果你未來要念數學系 這題不要給我用速解法 請好好看懂我後面證明的過程 如果喜歡這部影片 可以的話幫我按個讚和分享給更多人 謝謝~ 這個系列將會以解數甲微積分題目為主 每次影片都會講一個題型,而且...
今天這集一開始解釋了 上次為啥 a_n 不能直接假定的原因 因為有很多種可能 希望上次沒有想通的同學 能藉由我這次的舉例了解我的意思 然後這次的例題是很典型的差比級數 算是基本題 但也是我喜歡的題目...
【摘要】 很多人可能以為數學是絕對的,但實際上並不然,因為很多定義都是人定的;只要是人定的,就會有不同流派不同說法的現象產生,而這也造就了常常有人會因為一些數學定義上的不同而困惑或是爭執的情況發生。這...