從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
「半導體工程師種類」的推薦目錄:
- 關於半導體工程師種類 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於半導體工程師種類 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於半導體工程師種類 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於半導體工程師種類 在 商業思維學院- 交流社團| #半導體晶片製造公司 - Facebook 的評價
- 關於半導體工程師種類 在 台積電工程師種類的測驗範本和範例,YOUTUBE、104、PTT 的評價
- 關於半導體工程師種類 在 台積電工程師種類的測驗範本和範例,YOUTUBE、104、PTT 的評價
- 關於半導體工程師種類 在 新加坡半導體工程師薪水在PTT/Dcard完整相關資訊 - 你不知道 ... 的評價
- 關於半導體工程師種類 在 新加坡半導體工程師薪水在PTT/Dcard完整相關資訊 - 你不知道 ... 的評價
- 關於半導體工程師種類 在 設備製程工程師主要是幹麻的? - Mobile01 的評價
- 關於半導體工程師種類 在 軟體工程師 | Dcard 的評價
- 關於半導體工程師種類 在 工程師種類ptt - Tlfpe 的評價
半導體工程師種類 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
AI強勢來襲 物聯終端運算需求急遽增溫
2021-03-10 11:55 聯合新聞網 / CTimes零組件
【作者: 王岫晨】
物聯網正帶動人工智慧走向終端裝置,在後疫情時代,企業對物聯網 AI 的投資與布局動作頻頻。Arm 主任應用工程師張維良指出,我們可以很明顯看到四大趨勢如下:
新冠疫情加速 AI 部署
根據 Arm 於 2020 年 8 月與<<麻省理工學院科技評論洞察(MIT Technology Review)>>合作、針對來自 12 個不同產業的 301 位 C Level 的科技專業人士進行的訪談報告顯示,超過 62% 的受訪者表示,他們正在投資並使用 AI 技術。來自大型企業組織(年營收超過 5 億美元)受訪者的部署率較高,接近 80%。較小型的企業組織(營收低於 500 萬美元)的部署率則為 58%。1/3 的受訪者表示,2020 年新冠疫情的爆發加速了他們在 AI 策略上的部署。
企業組織正在提高對 AI 的投資
超過一半(57%)的受訪者看到他們的 AI 預算在過去三年內提升,且接近四分之一的人表示,他們在 2016 年到 2019 年間,年度 AI 支出最少增加一倍。其中,大型企業在 AI 支出的增加更多,73% 來自年營收超過 5 億美元的企業組織受訪者的預算都有增加,有近三分之一的受訪者預算甚至提升超過 100%。這些投資加碼反映 AI 對企業營運持續成長且普遍的影響。
超過半數企業將 AI 部署在終端裝置或邊緣運算
儘管對於已經使用 AI 的企業組織,雲端運算是他們最喜歡的基礎架構,不過在越來越需要極低延遲的數據存取,以及終端/邊緣處理能力的應用上,為了兼顧成本效益及運算效率,越來越多應用將往數據產生的來源靠近,邊緣運算或是將資源擺在更靠進存取它們的裝置的地方,相關的部署將急起直追。
對應軟硬體攻擊與保護個資/隱私的需求
AI 對幾乎所有商業與社會活動層面的衝擊持續擴大,讓企業領袖必須正視 AI 能否在負責任的規範下使用。消費者一方面對於交易與運作流程中藉助 AI 的接受度越來越高,但也期待企業能在公平的、高道德標準,並能顧及永續發展的條件下使用這項技術,特別在個資的搜集。因此在邊緣運算上,也衍生出對應軟硬體攻擊以及保護隱私等運算能力的強烈需求。
物聯網 AI 應用將聚焦於「3V」
根據 Arm 與 Strategy Analytics 合作的報告顯示,多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控,可參考圖一。
而終端 AI 可以在三個核心領域提供價值,而它觸及的許多物聯網領域,遍及 B2B 與 B2C(企業對消費者)的應用:震動(Vibration),語音(Voice)與視覺(Vision)。
震動
包含來自多種感測器數據的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。它可將智能帶進 MCU 中的終端 AI 的進展,產生不同應用領域,包括溫、濕度、壓力檢測、物理檢測(如滑倒偵測)、物質偵測(如漏水、漏氣)、磁通量偵測與電場偵測等等。運用震動分析的預測性維護(PdM),在旋轉型機器密集的製造工廠裡相當常見,可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。此外,磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。
語音
語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其它新的電器。在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正在興起。語音整合在車輛中也相當關鍵,因為語音有潛力成為最安全的輸入模式。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。其他車用的應用包括語音輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道,甚至拋錨服務與禮賓服務等。
視覺
終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其它實例包括農業應用,例如依據大小與品質為農產品分級。曳引機裝上機器視覺攝影機後可即時檢測出雜草、分類其種類、分析其對農穫的威脅、進而客製化除草解決方案。在工業上,包括利用熱顯影來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化,觸發排程系統,自動採取適當的行動來預防零件故障。
推動物聯網運算需求
隨著物聯網與 AI 的進展以及 5G 的推出,更多的終端智能意謂小型且成本敏感的裝置,會愈來愈有聰明、功能也愈來愈強,同時因為對雲端與網際網路的依賴較小,也將具備更高的隱私性與可靠度。因此,Arm對於MCU核心,也 透過新的設計為微處理器帶來智能,降低半導體與開發成本,同時為想要有效提升終端數位訊號處理(DSP)與機器學習能力(ML)的產品製造商,加快他們產品上市的速度。
TinyML
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合。它捨棄在雲端上運行複雜的機器學習模型,過程包含在終端裝置內與微控制器上運行經過優化的圖型識別模型,耗電量只有數毫瓦特。受惠於 TinyML,微控制器搭配 AI 已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如,自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
簡化程式碼的轉移性
把AI函式庫整合進 MCU,將本地的 AI 訓練與分析能力插入程式碼中是可能的。這讓開發人員依據從感測器、麥克風與其它終端嵌入式裝置取得的訊號,導出數據的型樣,然後從中建立模型。Arm Cortex-M55 處理器與 Ethos U55 微神經處理器(microNPU),利用像 CMSIS-DSP 與 CMSIS-NN 等常見API來簡化程式碼的轉移性,讓 MCU 與共同處理器緊密耦合以加速 AI 功能。透過推論工具把 AI 功能放在低成本的 MCU 上實作,並符合嵌入式設計需求,如此一來,有 AI 功能的 MCU 就有機會在各種物聯網應用中,讓裝置的設計改觀。
附圖:圖一 : 多數的物聯網應用聚焦在一些特定的領域。
圖二 : 不同應用對於機器學習的採用比起以往更盛。圖為Arm運算方案的對應圖。
資料來源:https://udn.com/news/story/6903/5307140?fbclid=IwAR2eJEJFLD1DFifJHQNbTkWEAjQSKBk3UFlM3whrk9T69h9tNXIw3geMQ8U
半導體工程師種類 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
半導體工程師種類 在 新加坡半導體工程師薪水在PTT/Dcard完整相關資訊 - 你不知道 ... 的推薦與評價
- 知乎2019年3月27日· 你好,请问新加坡半导体行业中的数字集成电路设计工程师的薪资待遇水平如何? 赞半導體工程師-薪水待遇最新情報查詢,就在1111薪資公秤JOB ... ... <看更多>
半導體工程師種類 在 新加坡半導體工程師薪水在PTT/Dcard完整相關資訊 - 你不知道 ... 的推薦與評價
- 知乎2019年3月27日· 你好,请问新加坡半导体行业中的数字集成电路设计工程师的薪资待遇水平如何? 赞半導體工程師-薪水待遇最新情報查詢,就在1111薪資公秤JOB ... ... <看更多>
半導體工程師種類 在 商業思維學院- 交流社團| #半導體晶片製造公司 - Facebook 的推薦與評價
最近半導體業很夯,跟大家分享半導體晶片(IC)製造公司的職缺種類,這類公司有:台積電、聯電、世界 ... 製程工程師通常由:光電、材料、化工、化學等背景的人擔任。 ... <看更多>