還在看 Youtube 影片東拼西湊?參加這堂線上課程,觀念講解,示範操作,隨堂測驗,Excel 一次學到好!
新手們剛打開 Excel 時肯定是一頭霧水,是要先學基本指令輸入,還是先把函數組帶進去試算一遍?
在本次的「Excel職場應用大全集」中,將初學到精通的課程劃分為四大部分:
1. 指令操作
2. 函數公式
3. 樞紐分析
4. 職場實戰
經過循序漸進的系統性規劃,學員們可以有條不紊的踏實學習,從Excel最常用基本指令操作、報表分析工具利用,到複雜數據的快速資料整理 —— 函數公式、最後是進階的實務應用,包含會計、業務、採購、製造等各部門職能實戰案例。
給你魚吃,不如把魚放進 Excel 裡。只要紮紮實實上完這堂課,Excel到0到1,熟悉這項辦公室必備電腦技能。
過往自學時碰到的瓶頸與難題,都可以在課程中找到解答,並訓練出高效率、高彈性的活用思路,從此成為辦公室的「報表之王」!
贊贊小屋Excel大全集提供總時數20小時以上課程影片,學員只要登入就能觀看,時間管理大師也能輕鬆學習。現在就報名參加,一起在 Excel 的世界裡運籌帷幄!
同時也有1部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 這個範例將舉出幾個型如 sin(x) / x 但更複雜的極限問題,但在處理上還是運用補項湊出 sin(x) / x 的型式來取得極限 【加入會員】 歡迎加入張旭老師頻道會員 付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利 👉 https://www.youtube.com/cha...
雜湊函數應用 在 Taipei Ethereum Meetup Facebook 的最佳解答
📜 [專欄新文章] Unirep介紹: 使用ZKP的評價系統
✍️ Ya-Wen Jeng
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Unirep是什麼? 怎麼用?
Photo by Raphael Lovaski on Unsplash
UniRep 是一個使用零知識證明(Zero-knowledge Proof)而達到具有隱私保障的評價 (reputation) 系統。使用者有權利享有多個暫時性的身份,但又同時能提出證明,讓其他人可以驗證評價是否符合自己宣稱的數量。此外,使用者也無法拒絕接收對自己不利的評價。
想像一個情境:如果Alice是Airbnb的使用者,Alice常常透過Airbnb租房,且Alice曾經獲得獲得許多Airbnb房東的好評;有一天Alice想透過Booking.com訂房,http://xn--alicebooking-kt4so6lvyab96x7trhi5b54x.com/,所以在Booking.com上沒有任何評價,萬一Booking.com的房東不想把房子租給來路不明的客人,那Alice要如何向Booking.com的房東證明她其實都是用Airbnb租房,且獲得許多好評?
Alice雖然可以透過截圖或公開自己的資訊向Booking.com的房東證明自己擁有這些好評,但這樣Alice的隱私或許會被洩漏,例如Alice不想讓Booking.com的房東知道自己去過哪些地方、住過哪些民宿;或者Alice有可能偽造截圖,或者偽造評價,那Booking.com的房東要如何相信Alice所提供的證明文件是真的來自Airbnb的房東?除此之外有沒有更彈性的方式,Alice可以選擇性地向Booking.com的房東證明,自己至少有10個好評,但不透露自己總共有多少好評?
Photo by Andrea Davis on Unsplash
使用Unirep協定就可以解決這個問題。UniRep 取名自 Universal Reputation,希望透過區塊鏈上智能合約的可互用性 (interoperable,指智能合約容易被多方呼叫且容易透過智能合約與對方互動),讓不管是Airbnb的房東、Booking.com的房東或是Alice都能很容易地透過Unirep的智能合約與對方互動,且透過零知識證明的方式,讓Alice的評價具有隱私的保障,Alice不用明確地向Booking.com的房東說這些評價是怎麼獲得、是什麼時候獲得,也可以彈性的證明自己至少有多少好評,或者最多有多少差評。
密碼學
Unirep主要用到的密碼學方法有
雜湊函數 hash:若有一個雜湊函數 f(x) = y 則由x可以很輕易的用f算出y,但從y推回x是幾乎不可能的,且要找到兩個不同的x對應到相同的y也是幾乎不可能的(沒有碰撞問題)。
零知識證明 zero-knowledge proof:可以將複雜的運算邏輯轉成容易驗證且具有隱私保障的驗證問題,使用者只要將變數輸入,這個零知識證明的演算法就會產生對應的證明且計算出對應的結果,使用者只要將此證明和運算結果輸入驗證的程序中,其他人就能驗證使用者是不是提出正確的證明,若驗證成功,則驗證者就能相信提出證明者高機率擁有正確的知識,也就是在計算證明時的輸入變數。
ZKP Proof System
ZKP Verification System
Semaphore:semaphore 是設計為可以用零知識證明驗證的身份認證系統。Unirep 中用來產生私鑰 (identity) 和公鑰的 hash 值(identity commitment),讓使用者不必公開 identity 仍能透過零知識證明驗證其公私鑰的對應性。
雜湊樹 Merkle trees:Unirep 中大量運用雜湊樹的方式確保評價紀錄,而其中用到的雜湊樹又分兩種:Incremental merkle tree 和 Sparse merkle tree
Incremental merkle tree: 從 index 0 開始依序插入雜湊樹中的樹葉。為了使 ZKP 的 circuit 大小固定, Unirep 中使用固定高度的 Incremental merkle tree。
Sparse merkle tree: 在特定的 index i 插入樹葉
Incremental merkle tree and sparse merkle tree
UniRep中用到的名詞定義
Epoch
指一段特定的時間,例如7天
UniRep 的 Epoch 從 1 開始計算,7天過後Epoch數加一,即 Epoch 變為 2
Epoch Key
每個使用者在每個 Epoch 都能產生 n 把 Epoch key,用來收取評價 epoch_key = hash (id, epoch, nonce)
id: 這裡指用 semaphore 產生的 identity
epoch: 表示這是在第幾個 epoch 產生的 epoch key
nonce: 若 Unirep 規定使用者能在一個 epoch 產生 5 把 epoch key,則使用者可以選從 0 到 4 為此 nonce
因為雜湊函數的性質,算出來的 epoch key 很難推回原本的 id, epoch, nonce, 所以看到 epoch key 並不能推回使用者是誰。
以Alice為例,當Alice住完Airbnb,房東會透過 epoch key 給予 Alice 評價,但房東無法知道 Alice 在同個 epoch 的其他 epoch key 是哪一把,也無法知道 Alice 在別的 epoch 獲得的評價,除非 Alice 在這個 epoch 重複使用同一把 epoch key 收取評價。
User 使用者
用 semaphore 產生 identity 並使用此 identity 註冊的使用者
使用者是接收評價、證明評價、或是花費評價的人,用 epoch key 跟其他人互動,因為 epoch key 會隨著 epoch 增加而改變,所以對使用者來說每個 epoch 能產生的 epoch key 都不同,具有保護隱私的效果。
在上面的例子中使用者指的是 Alice, Bob, Airbnb 的房東, Booking.com的房東
Attester 證人
用 Ethereum address 或 smart contract address 註冊的用戶
是會被使用者記錄下來的評價給予者
Unirep 會給這些 address 一個 attester ID,而這個 attester ID 不會隨著 epoch 增加而改變,使用者可以知道這個評價是來自哪一個 attester。
在上面的例子中指的是 Airbnb 跟 Booking.com,因為 attester ID 不變,所以使用者可以證明這些評價是來自於 Airbnb 或是 Booking.com
User State Tree (UST)
是一 Sparse merkle tree
每個使用者都有自己的 User State Tree,其中樹葉表示所收到的評價的hash值,而葉子的 index 表示 attester ID,UST 樹葉的定義為
USTLeaf = hash(posRep, negRep, graffiti)
例如 Airbnb 的 ID 是1,Booking.com 的 ID 是 3,那 Alice 的 User State Tree 中 index 為 1 的地方會有自己在 Airbnb 獲得的總評價的 hash 值,而 index 為三的地方則為空的評價。另一個使用者 Bob 的 User State Tree 亦同,在 index 為 1 的地方會有自己在 Airbnb 獲得的評價,在 index 為 3 的地方會有自己在 Booking.com的評價。
Global State Tree (GST)
是一固定樹高的 Incremental merkle tree
Global State Tree 的葉子到樹根都是公開的資訊,當有使用者註冊或者更新 User State Tree 時會在 Global State Tree 裡新增一個新的樹葉,GST 樹葉的定義為:
GSTLeaf = hash(id, USTRoot)
先送出的樹葉先插入到較前面的 index,之後的樹葉依序插入 GST 中。
以 Alice的例子來說,當 Alice跟 Bob註冊 Unirep時,都會產生一個 GST的樹葉,更新 GST的樹根,若 Alice先註冊,則 Alice的 index會較 Bob前面。注意,這邊的 Airbnb 和 Booking.com 等 attester 並不是用這棵 Global State Tree註冊。
Epoch Tree
是一個 Sparse merkle tree
Epoch Tree 跟 Global State Tree 一樣從葉子到樹根都是公開的資訊,Epoch Tree 中樹葉的 index 為 epoch key,而樹葉的值為該 epoch key 的 sealed hash chain
每個 epoch key 都有一個 hash chain,hash chain 的定義為
hashedReputation = hash(attestIdx, attesterID, posRep, negRep, graffiti)hashChain[epochKey] = hash(hashedReputation, hashChain[epochKey])
此 hash chain 是為了防止使用者漏收了哪一筆評價,如果使用者少收了其中一筆評價,則 hash chain 的結果會完全不同。最後驗證時如果其中一個 epoch key 的 hash chain 改變,會造成 epoch tree 樹根跟原本的 epoch tree 的樹根不同。
而 Sealed hash chain 是在每個 epoch 結束後,Unirep 智能合約會再將這條 hash chain 再 hash 一次
sealedHashChain[epochKey] = hash(1, hashChain[epochKey]) isEpochKeyHashChainSealed[epochKey] = true
需要再把這條 hash chain 封起來的用意是,避免這把 epoch key 過了這個 epoch 之後再繼續接收評價,所以 epoch tree 會用這個 epoch key 最後的 sealed hash chain 去計算樹根。
Nullifier
中文翻譯為註銷符,當我們要防止一件事情重複發生時,就可以使用這個 Nullifier
Unirep 中使用到 Epoch key nullifier:此 nullifier 是用來限制使用者不能在不同的 epoch 使用重複的 epoch key 去收取評價,也不能被其他使用者使用;此外也可以用來檢視使用者是否重複執行 UST 的更新
Nullifier 也用 hash 計算,但多使用一個 domain 變數,避免與 epoch key 產生相同的 nullifier 而洩露自己擁有的 epoch key,也可以用不同的 domain 產生不同用途的 nullifier
epochKeyNullifier = hash(EPOCH_KEY_DOMAIN, id, epoch, nonce)
Epoch Transition
一個 epoch 結束過後,要透過 epoch transition 的步驟,更新 Unirep 及使用者的狀態
其中要做的事包含將智能合約上的 epoch 數加一,還有將所有 epoch key 的 hash chain 封起來
接著使用者就可以執行 User State Transition 更新自己的 UST
User State Transition
到下一個 epoch 後,使用者可以透過自己的 identity,找出自己在前一個 epoch 所有的 epoch key,並根據每把 epoch key 收到的評價更新到自己的 UST,最後計算出最新的評價狀態,產生一個 GST的樹葉,插入 GST 中 (如同註冊時一樣)。
使用者之後如果要花費評價或者產生下一個 epoch 的 epoch key 時,因為必須確認自己的 UST 在當前的 epoch,所以需要經過 User State Transition 確保自己有一個 GST 的樹葉在 GST 中。
Unirep 協定
有了 Unirep 的名詞定義後,接著介紹 Unirep 是如何運作的。
註冊
Unirep 的 user 和 attester 的註冊方式不同:
User signup and attester signup in Unirep
User
User 透過 semaphore 產生 identity 和 identity commitment,identity 就如同私鑰,identity commitment 就如同公鑰
將 identity commitment 和預設的 UST 樹根經由 hash 計算得 GST 的一個樹葉
若使用者要證明自己在某個 epoch 有註冊或者有更新自己的 UST,則證明自己是 GST 的某一個樹葉,利用零知識證明的方法,輸入 identity、UST 樹根,還有 merkle tree 中要計算 hash 值的相鄰節點,則最後可得到一個 GST 的 root,其他人可以驗證這個 GST 的 root 是否符合這顆公開的 GST。
Attester
Attester 則是用自己的錢包,或者用智能合約的地址註冊,呼叫 attester sign up 的 function 後,Unirep 會指定一個 attester ID 給這個地址,往後 attester 用相同錢包或合約地址給予評價時,Unirep 會檢查此地址是否被註冊,若有註冊則可以給予 epoch key 評價。
以 Alice 和 Bob 為例,Alice、Bob、Airbnb的房東、Booking.com的房東會產生 identity 並且透過 Unirep 合約用 user 的註冊方式獲得一個 GST 的樹葉代表自己;
而 Airbnb 和 Booking.com 會透過 attester 的註冊方式,使用特定的錢包地址或是撰寫智能合約呼叫 Unirep 的 attester sign up function。
當然 Alice 或 Bob 如果想用自己的錢包註冊為 attester 也是可以,這時合約就會紀錄 Alice 和 Bob 的錢包地址,並給予一個新的 attester ID。
給予評價
在 Unirep 中評價的接收者是 epoch key,接著介紹 user 和 attester 是如何互動。
How an attester gives reputation to an epoch key
Alice 在 Unirep 註冊過後,就可以產生 epoch key 接收評價
epochKey = hash(identity, epoch, nonce)
但 Airbnb 的房東看到這把 epoch key,要如何知道 Alice 確實是 Unirep 的合法使用者,且 epoch key 的 是合法的,例如 nonce 小於 5,或者 epoch 是當前的 epoch?
如果 Alice 直接提供 epoch 和 nonce,別人沒有 identity 也無法計算此 epoch key,更不用說如果 Alice 提供 identity 會造成 Alice 完全沒有隱私可言,所有人都可以計算出 Alice 收過哪些評價。
因此我們用一個零知識證明,證明此 epoch key 是合法的。細節請參考 epoch key proof,主要是證明使用者有一個合法的 GST 樹葉在 GST 中,並且 epoch 和 nonce 也都符合。
房東得到 Alice 提供的 epoch key 和 epoch key 的證明,並且透過 Unirep 的合約驗證通過之後,就可以給予評價。
獲得空投評價、使用者可以給予評價的限制可以由各個應用自行定義,例如 Airbnb 可以決定空投 30 個正評給使用者, Booking.com 可以決定空投 20 個正評給使用者。
另外,為了確認房東也是合法的使用者,也為了防止房東重複花費 (double spending) 自己的評價點數,Unirep 上的應用也可以用 reputation nullifier 及其 proof 去證明使用者合法使用自己的評價。
例如,此 reputation nullifier 可以用下列計算方式取得:
reputationNullifier = hash(REPUTATION_DOMAIN, id, epoch, nonce)
當 reputation nullifier 及 proof 產生後,就會與房東要給的評價一起發送到 Airbnb 的智能合約上,智能合約會驗證 proof 是否合法,nullifier 是否有被發送過,若檢查都通過的話則 Unirep 會紀錄此評價給 epoch key,並將 hash chain 更新。
接收評價
使用者即使可以證明自己擁有哪一把 epoch key 並且大家都知道這把 epoch key 有多少評價,但這有可能造成使用者故意忽略其他把 epoch key 中對自己不好的評價,因此 Unirep 限制使用者只能在每個 epoch 結束,每把 epoch key 都封起來之後,才能用 User State Transition 更新自己的評價。
User State Transition in Unirep
這裏也是用 User State Transition Proof 去保證使用者是根據正確的方式計算出最新的 UST,且用 epoch tree 限制使用者必須處理每一把 epoch key 的結果。
亦即,需要等到 epoch 結束後,Alice 才能透過 User State Transition 獲得 Airbnb 房東的評價,更新自己的使用者狀態。
證明評價
當使用者通過 User State Transition 之後會有最新的 UST 狀態,此時 Alice 就可以透過 reputation proof 向 Booking.com 她有來自 Airbnb 的評價,在reputation proof 中檢查使用者是否有其宣稱的 UST (例如總共有多少好評、多少差評來自哪一個 attester ID),並且此 UST 的狀態儲存在當前 epoch 的 GST 中。
在生成 reputation proof 時,即使 Alice 總共有 100 個好評,但 Alice 仍可以產生「至少有10個好評」的證明,Booking.com 的房東若驗證成功,則只能知道 Alice 宣稱的「至少有 10 個好評」而不能知道 Alice 總共有 100 個好評。
常見問題
Alice 能不能給 Airbnb 的房東評價? Alice 能不能給 Bob 評價?
可以。
Airbnb 的房東和 Bob 也都能產生 epoch key,因此如果 Alice 有兩者的 epoch key 及合法的 proof 則可以給予評價。此時 Alice 可以選擇透過 Airbnb、Booking.com、或甚至自己的 Ethereum account 當作證人給予評價 (也必須選擇一個證人)。
Alice 可以透過 Unirep 給 Airbnb 評價嗎?
如果 Airbnb 也透過 Unirep 註冊為使用者,並且產生 epoch key 的話就可以。但如果 Airbnb 只註冊為證人的話不行。
Alice 可以證明評價來自哪一個 Airbnb 房東嗎?
如果 Airbnb 的房東沒有註冊為證人,則 Alice 不能證明評價來自哪個房東。
若 Airbnb 的房東用自己的 Ethereum account 註冊為證人,則 Alice 只能證明評價來自這個 Ethereum account,但無法知道這個 account 是一個 Airbnb 的房東。
從 Airbnb 獲得的評價可以在 Booking.com 花費嗎?
需看 Booking.com 的智能合約如何定義,但一般來說不行,因為 attester ID不同,但未來可能會開發各個應用程式之間的兌換評價功能。
如果遲遲不執行 User State Transition 會發生什麼事?會不會收不到之前的評價?
若 Alice 在第一個 epoch 註冊,並在第一個 epoch 產生 epoch key 接收評價,但 Alice 到第五個 epoch 才執行 User State Transition,那 Alice 會根據第一個 epoch 的 GST、epoch tree 執行 User State Transition,因此仍然可以在第五個 epoch 收到來自第一個 epoch 的評價;而在第二到第四個 epoch 因為 Alice 無法產生出合法的 epoch key proof,因此無法接收評價。
User State Transition 可以自動執行嗎?
不行。
只有使用者主動給出私鑰,即 semaphore 的 identity,才可以產生合法的 User State Transition proof,若將私鑰交給第三方幫忙執行可能會侵害使用者的隱私。
結論
Unirep 是一個具有隱私保障的評價系統,透過 ZKP 的保護使用者可以在匿名的情況下收取評價、給予評價、並且向他人證明自己的評價。Unirep 可以用於跨應用程式間的評價證明,可以在 A 應用程式中獲得評價,並向 B 應用程式證明在 A 應用程式中獲得多少評價。若想了解更多有關 Unirep ,可以參考 Github、文件或加入 telegram 群組討論。
本文感謝 CC, Nic, Kevin, Doris 協助審稿。
Unirep介紹: 使用ZKP的評價系統 was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
雜湊函數應用 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改
人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警
2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室
本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。
長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。
據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。
立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。
由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。
其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。
另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。
根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。
背景知識說明
本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。
由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。
何謂人臉辨識
人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。
目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:
‧ 普遍性:屬於任何人皆擁有的特徵。
‧ 唯一性:除本人以外,其他人不具相同的特徵。
‧ 永續性:特徵不易隨著短時間有大幅的改變。
‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。
‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。
人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。
人臉辨識的步驟
人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。
人臉偵測
基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。
Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。
人臉的預處理
偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:
‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。
‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。
‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。
人臉特徵摘取
關於人臉特徵摘取,相關的技術說明如下:
‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。
‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。
‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。
何謂酒精鎖
酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。
根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。
在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。
許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。
對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。
認識區塊鏈
區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。
區塊鏈的原理與特性
可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。
關於區塊鏈的特性,可分成以下四部分做說明:
1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。
2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。
3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。
4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。
區塊鏈與酒精鎖
由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。
酒駕防偽人臉辨識系統介紹
為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。
在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。
如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。
區塊鏈打包上鏈模擬
在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。
要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。
將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。
情境演練說明
話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。
已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。
待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。
酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。
系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。
如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。
結語
酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。
為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。
附圖:圖1 人臉辨識的步驟。
圖2 人臉特徵點偵測(正臉)。
圖3 人臉特徵點偵測(左側臉)。
圖4 人臉特徵點偵測(右側臉)。
圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
圖6 區塊鏈分散式節點的概念圖。
圖7 系統概念流程圖。
圖8 取出人臉128維特徵向量。
圖9 儲存車輛相關資料及人臉資料到區塊。
圖10 HASH後及打包成區塊的結果。
圖11 汽車發動前小禛的人臉影像。
圖12 小禛的人臉影像特徵點。
圖13 小禛的人臉特徵向量資料。
圖14 系統通過酒測檢測者與駕駛人為同一人。
資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D
雜湊函數應用 在 數學老師張旭 Youtube 的精選貼文
【摘要】
這個範例將舉出幾個型如 sin(x) / x 但更複雜的極限問題,但在處理上還是運用補項湊出 sin(x) / x 的型式來取得極限
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【勘誤】
無,若有發現任何錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsumath/reviews
【習題】
重點十二:https://drive.google.com/file/d/1D8R-DA-7epAyFnVqNqPrR0Kgjiy14NKO/view?usp=sharing
偶數題講解影片:https://www.youtube.com/playlist?list=PLKJhYfqCgNXhWs16FYbGx5HTe2QdPwBqD
簡答:https://www.facebook.com/groups/changhsumath666.calculus/files
微積分討論群:https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商學院學生觀看
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
重點一:極限的直觀定義 (https://youtu.be/hZT2fOcxSJw)
重點二:極限的嚴格定義 (https://youtu.be/gCkhy0aODZk)
重點三:一些基本函數的極限 (上集) (https://youtu.be/qoIOFz1D_W4)
重點四:極限運算定理 (四則運算篇) (https://youtu.be/d6PzP8ApFgk)
重點五:極限運算定理 (合成篇) (https://youtu.be/h2X2yyGyWHQ)
重點六:去零因子求極限 (https://youtu.be/vqoc59G-gRI)
重點七:去絕對值求極限 (https://youtu.be/PYzasrBZWWA)
重點八:高斯符號求極限 (https://youtu.be/EXKQQS17k2Y)
重點九:含無窮符號之極限 (https://youtu.be/RhKkx7DO_kM)
重點十之一:老大比較法 (上):多項式分式 (https://youtu.be/Wr6rkCa1Neo)
重點十之二:老大比較法 (中):指數函數多項式 (https://youtu.be/FYGzcSw0U0s)
重點十之三:老大比較法 (下):叉叉接旨刺 log (https://youtu.be/YbvXCZmmff4)
重點十一:夾擠定理 (https://youtu.be/sTvtt4K85s0)
重點十二:lim_(x→0) sin(x) / x 專論 (https://youtu.be/sVohBWF-6ww)
└ 精選範例 12-1 👈 目前在這裡
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分前篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXikxrvbQAnPa_l3nFh5m9XK)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
【數列與級數】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjcv6ChH_w0Y0WRkdbiP6xY)
【多變數函數的微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhoWH8tB00L6d3tWMV1l_o8)
【向量微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhVcuTj1IoCcYsRhJqoHN-y)
【附註】
1. 積分前篇和後篇自 2021 年 5 月起改成買張旭微積分上學期講義解鎖影片
2. 數列與級數以後的章節為下學期內容,為付費課程,購買後在張旭無限教室線上課程平台觀看
張旭微積分上學期講義購買頁面
👉 https://www.changhsumath.cc/calculusBook
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://www.changhsumath.cc/calculus2nd
【張旭無限教室線上課程平台】
2021 年年初,我建置了一個線上課程平台
除了放我的線上課程以外
也有其他與我合作的老師們的課程
👉 https://changhsumath.com
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
雜湊函數應用 在 【Algorithm】雜湊應用—安全性演算法 的推薦與評價
根據先前文章介紹的雜湊,此篇實際運用它們實作一個應用。 ... 使用,先將傳送者的明文資料以雜湊函數運算出H,再利用自己的私鑰對雜湊值H 進行加密, ... ... <看更多>