📜 [專欄新文章] ELI5! 區塊鏈到底在幹嘛?
✍️ Juin Chiu
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
用生活化的例子輕鬆學會區塊鏈技術的重要概念
前言
我們熟知的世界正在慢慢地被區塊鏈技術瓦解與重建。不論背景,有愈來愈多人想對區塊鏈技術一探究竟,或許更進一步成為從業者、貢獻者或佈道者。
不幸的是,初學者若想學習區塊鏈技術,第一個問題可能會是高學習門檻,這是因為目前在各種主流平台上所流傳的區塊鏈知識或資源,都不免會大量使用艱澀的術語,長久以來便塑造出區塊鏈高大上的距離感,好似區塊鏈是只專屬於一小群駭客或者專業人士才能理解的技術。然而這是不準確的,事實上,區塊鏈技術中許多概念都能用一般常識理解,頂多只需要國小數學。
本文中,筆者將化繁為簡,試著把區塊鏈技術中的每個元素都使用生活化的例子比擬,讓區塊鏈愛好者與初學者不需用到密碼學/經濟學/資訊科學,也能領會區塊鏈技術的精髓之處。
本文將提及的概念如下:
什麼是帳本?
什麼是交易?
為什麼需要區塊?
有哪些共識機制?
區塊鏈安全嗎?
智能合約如何運作?
以下正文開始:
區塊鏈:一個公平的記錄系統
簡單來說,區塊鏈技術旨在打造一個去中心化的(Decentralized)狀態紀錄系統,更準確一點:區塊鏈技術旨在打造是一個追求真正「公平」的系統。
區塊鏈實現公平的關鍵在於:它完全仰賴自然法則運作,只透過一系列精細的規則就能保證系統的正確,這打破了人類社會一直以來的仰賴的中心化系統,使促成不平等的最大因素不復存在。
區塊鏈技術可以打造出具世界規模的去中心化運算平台,由數千甚至數萬個參與者共同維護狀態並提供計算資源。如果這個運算平台是應用在貨幣與資產的場景中,那麼這個平台可被稱為分散式帳本。
在接下來的段落,筆者將用一個例子展示一個極度精簡、只用紙跟筆的就可以運作的分散式帳本。在這個例子中,一群學生可以使用區塊鏈技術發行屬於他們自己的虛擬幣:「考卷幣」(Exam Paper Coin, EPC)。
考卷幣:使用區塊鏈技術發行的虛擬幣
考卷幣(EPC)是一種使用區塊鏈技術發行的虛擬幣,並存在於分散式帳本中。它的用途是為考卷加分,這將會吸引想考高分或者擔心被當的人學生持有。為什麼 EPC 只能被稱作虛擬幣,而不被稱作密碼貨幣?這是因為 EPC 的發行不會使用任何有關密碼學的技術,因此 EPC 嚴格來說不是密碼貨幣。
在分散式帳本被創建之初,沒有任何人擁有 EPC ,那麼 EPC 是怎麼「鑄造」與分配的?至少可以肯定的是,EPC 不能憑空產生,否則所有參與者就能不斷製造 EPC,使分散式帳本崩潰。事實上,EPC 的價值奠基於參與者的「付出」。
分散式帳本中最重要的角色非記帳者莫屬。每當記帳者成功完成工作,它便可以獲得固定數量的 EPC 作為報酬。於是,分散式帳本中的 EPC 便如此逐步地被鑄造出來。將 EPC 賦予具有貢獻的記帳者除了能夠公平分配 EPC,同時也是一種激勵機制(Incentivizing Mechanism),提供參與者維護帳本的動機。
那麼每個人所具有的 EPC 是怎麼記錄在帳本中的?
帳本: EPC 都要記錄下來
帳本即為依時間順序與特定格式記錄價值的系統。在分散式帳本中,每一批紀錄都會由某一個特定的「記帳者」維護,而記帳者會以特定的規則從所有的參與者中選出,因此分散式帳本是具有多個「記帳者」的系統。
為了確保能公平選出 EPC 的所有記帳者,分散式帳本不會使用任何記帳者的個人資訊,例如姓名、電話,做為帳本上的識別。記帳者可以自由地使用假名(Pseudonym)作為帳本上唯一的識別(Identifier),或者稱為地址(Address)。所以王小庭同學可以使用 Alice 這個假名,而且如果王小庭同學喜歡的話,他也可以同時使用 Bob 這個假名。
EPC 使用如下的格式記錄每個地址幣的數量:
Alice 100 EPCBob 0 EPCCharlie 0 EPCDavid 0 EPCEva 0 EPC
多數區塊鏈稱其識別為地址(Address),其為非對稱密碼學中公鑰(Public Key)的雜湊值(Hash)。地址具有統一的格式,例如以太坊的地址為長度 160 位元的 16 進位數字。
交易:把我的 EPC 轉移給別人
EPC 是可以轉移的,現在 Alice 可以將它持有的 100 EPC 中的 60 EPC 轉移給 Bob,以幫助 Bob 在下一次考試中免於被當。這樣的轉幣紀錄稱為交易(Transaction, Tx),可以如下表示:
Tx1
60 EPC, from [Alice] to [Bob]
而這筆交易會由 Alice 以上述格式記在紙條上,以 Tx1 表示。
簽章:讓參與者的所有動作都不可抵賴
EPC 的每個參與者的每個行為,例如交易,都必須附帶簽章(Signature),證明「這個動作確實是由我本人發起的」,簽署者不可抵賴,任何沒有附帶簽名的動作都是不被承認的。一個附帶簽名的交易紙條會像這樣:
Tx1
60 EPC, from [Alice] to [Bob], ALICE
簽章分為簽署(Sign)及驗證(Verify)兩個動作。驗證即是確認簽章是否確實是由行為發起者所簽署。在這個例子中,僅用一個簡單的驗證:若簽章與識別相符,則驗證成功。例如 Tx1 中,簽名 ALICE 確實與交易發起者 Alice 相符,因此驗證成功。
簽章就是區塊鏈的數位簽章(Digital Signature),其使用私鑰(Private Key)簽署,公鑰(Public Key)驗證,非常難以偽造。
訊息的散佈:怎麼讓所有參與者都收到訊息?
由於 Tx1 是由 Alice 發起的,因此 Alice 將於它自己的帳本記下這筆交易,接著 Alice 必須把這筆交易的內容也轉達所有的參與者,讓所有參與者皆具有所有的交易內容。
EPC 的參與者們不以口語,而是以傳紙條的方式互相交換訊息。紙條要如何有效率地傳播訊息給所有在教室中的參與者呢?可以使用「一傳十、十傳百」的策略。也就是:一次傳 10 張紙條給自己周圍的參與者,參與者收到後再抄寫 10 次後傳給周圍尚未收到該紀錄的其他參與者,逐步將訊息擴散致所有參與者。
這樣的傳播策略正如同流言被散佈的方式,因此也被稱為流言散佈協定(Gossip Protocol)。紙條傳播的網路就是對等網路(Peer-to-peer Network),紙條就是對等網路的封包(Packet)。關於對等網路的介紹,可以參考筆者日前的撰文:
隱私、區塊鏈與洋蔥路由
區塊:記錄一段時間內的交易順序
經過一段時間之後,每個 EPC 參與者手上都會有許多來自別的參與者的紙條,每張紙條都記載著不同的交易。在理想狀況下,如果所有參與者收到紙條的順序都相同,且每個參與者都收到了所有紙條,則所有參與者的帳本上的狀態,也就是餘額,都會相同。然而,若採用上述的訊息散佈策略,會發生兩種情況:每個參與者收到紙條的順序會不同,或者某些紙條可能會被遺漏。這些情況都會讓每個參與者的帳本產生差異,使帳本不可靠。而一個不可靠的帳本,不能作為貨幣發行的工具。
有沒有辦法能使所有 EPC 參與者用相同的交易順序記帳呢?這便是區塊鏈技術的奧秘之處。
為此,我們需要使用一個精心設計的結構:區塊(Block)。每個參與者皆會將一段時間內收到的交易紙條的編號,依照自己的順序寫在另一張紙條上,這張紙條就是區塊紙條,簡稱區塊,產出區塊的參與者則稱為區塊生產者。收到區塊紙條的其他參與者便會知道區塊生產者在這段時間內的交易順序。
為了要讓所有帳本都具有一致的狀態,EPC 的所有參與者必須要選出其中一個區塊作為所有參與者的共識(Consensus)。所有參與者都必須要遵照共識區塊的交易順序來更新自己的帳本,而這個區塊生產者就是記帳者。由於記帳者可以獲得報酬,因此在利益的驅使下,所有參與者都會努力生產區塊以爭取記帳權。
值得注意的是,每個區塊當中都會記錄前一個已達成共識的區塊的編號。例如接下來的範例,Bk15 的前一個已達成共識的區塊為 Bk3:
Bk15
Last Block: Bk3
Height: 15
Transactions:- Tx1- Tx5- Tx4- Tx10- Tx7- Tx13
Nonce: 1
Signature: CHARLIE
由於每個新的共識區塊都會指向前一個共識區塊,如此便會形成一條長鏈般的結構,已形成共識的區塊接成一條鏈,這就是區塊鏈(Blockchain)名稱的由來。
而當 EPC 參與者在收取共識的區塊後,將按照共識依序為每個交易內容進行帳本餘額的轉換。如此,所有的帳本都將具有一致的狀態。
依據特定輸入及轉換函數(Transition Function)執行狀態更新的系統,稱為狀態機複製(State Machine Replication)
摘要:濃縮紙條上的訊息
在介紹達成共識的方法前,筆者要先來介紹一個樸實無華但重要的概念:摘要(Digest),其顧名思義就是一段內容經過消化的產物。假設有一種摘要產生器,這個機器可以放入一張紙條,然後透過 3 個步驟計算出紙條的摘要。
摘要產生器將記載訊息的紙條切成一條一條固定寬度的細長條狀紙帶,如下圖:
2. 將這些紙帶依照順序接成一個長條紙帶。紙帶上有字跡的黑色部分與沒字跡的白色部分會出現不規則相間,測量每個黑色區塊之間相鄰的距離,如下圖:
3. 每段距離的數字相乘後的數字就是這個紙條的摘要(Digest)。
每個 EPC 參與者都會有一台摘要產生器,而它需要上緊發條才能開始工作,且每計算完一張紙條便須重新上一次發條。
摘要的計算雖然簡單,卻具有一些很有用的特性:
首先,摘要會隨著紙條內容的變動而更動。只要更動了任何一點紙條內容,例如區塊的交易順序,或者流水號(Nonce),都會使摘要改變。因此一個附上摘要的紙條,可以讓收到紙條的人在收到後再自行計算一次摘要並比對兩者,以驗證紙條的內容是否被修改過。因此,摘要是可驗證的(Verifiable)。
若想在不更動摘要的情況下同時變動紙條內容,只能不斷嘗試用不同內容產生摘要,直到發生碰撞(Collision) — 意即兩個不同內容的紙條出現相同摘要。
其次,摘要也是單向的:一個紙條很容易產出摘要,但摘要很難還原出原本的紙條內容。這也代表摘要是隨機且難以預測的,因此摘要可以作為一種亂數(Random Number)來源。
正式的區塊鏈使用更難預測且更不易碰撞的的密碼雜湊函數(Cryptograpgic Hash Function)產生訊息摘要。
理解關於區塊鏈技術的基本要件後,接下來就來看看區塊鏈技術的精妙之處:共識機制。
共識機制:如何達成共識?
在區塊鏈技術中,大致上有兩種方式可以產生共識:抽彩(Lottery)或表決(Vote),它們各自有不同特性,每一種分散式帳本都會使用其中之一作為共識機制。
抽彩
在抽彩機制中,唯有摘要小於門檻值的「合法」區塊才會被所有參與者收受。然而,區塊生產者無法預測摘要,且可驗證的摘要使區塊生產者難以作弊。因此若想生產數字小於門檻值的摘要,區塊生產者必須不斷改動區塊內容,例如流水號或者交易順序,直到找到摘要小於門檻值的區塊,就像抽彩一樣。只有合法的區塊才會被區塊生產者散佈給其他 EPC 參與者。
在這樣的規則下,可能會同時出現多個合法區塊。還記得區塊鏈中「鏈」的部分嗎?當收受多個低於門檻的區塊時,該選哪個區塊作為上一個區塊呢?這裡我們可以用一些簡單的規則來做抉擇:選擇合法區塊中高度(Height)最高的區塊,若高度一樣則選擇摘要數字較低的區塊。
區塊紙條的摘要就是正式區塊鏈中的區塊雜湊值。在正式的區塊鏈中,門檻值愈低,困難度(Difficulty)也愈高。區塊的選擇規則也稱為分岔選擇規則(Fork Choice Rule),使用可驗證的亂數作為共識的做法又稱為中本共識(Nakamoto Consensus)。
表決
有別於複雜的抽彩,表決機制相當直觀:所有參與者針對某個預先選出的領袖(Leader)的提案(Proposal),也就是區塊,進行投票。領袖是怎麼選出的?一個直覺的做法是按照假名的順序,按照 Alice / Bob / Charlie 的順序,所有參與者輪流擔任領袖。
所有參與者在收到提案後,可以選擇同意或反對這個區塊的內容,若同意的話,則將自己對提案的同意票記在紙條上,並將這個投票紙條散佈給所有其他參與者。若多數的參與者同意了提案,則所有參與者皆須認定該提案為共識。
然而,表決機制雖然直觀,卻不如抽彩具有可驗證性,參與者若想作弊則相對容易:例如,參與者可以重複投票,或者串通其他參與者一起不投票,以破壞帳本;另一方面,表決比抽彩來得有效率,因其不需要所有參與者都費功去製造可能將不被收受的區塊。
拜占庭錯誤(Byzantine Fault)特指這些不在預期內的行為,表決機制事實上也就是拜占庭容錯(Byzantine-fault-tolerant, BFT)演算法。PBFT 家族的協定是目前拜占庭容錯演算法的主流,然而其至多只能容忍不超過參與者總數一半的拜占庭錯誤。若想了解更多 PBFT 的細節,可以參考筆者日前的撰文:
若想搞懂區塊鏈就不能忽視的經典:PBFT
女巫:如何避免帳本被單一個體掌控?
上文提到:為了保證公平的記帳權,帳本上的識別都是假名,如上文提及,Alice 跟 Bob 實際上都是由同一個參與者王小庭所控制,其他參與者不僅難以得知,而且王小庭喜歡的話,他愛用幾個假名就用幾個假名 — 掌控多個假名的王小庭就成為了「女巫」(Sybil)。
不論是採取何種共識機制,女巫的存在都會破壞分散式帳本的安全性:
在抽彩機制中,如果多數的參與者皆由女巫控制,則女巫有很大的機會可以無視規則,不需抽彩便竄改帳本。
在表決機制中,如果由女巫控制的參與者可以集體進行不在預期內的行為,例如重複投票或者不投票。
因此,抵抗女巫對於分散式帳本的安全至關重要。對此,一個直覺的思路是:讓每個假名的行為都必須付出有限的資源,例如錢跟力。因此有兩種方式可以抵抗女巫:要嘛出錢,要嘛出力。
出力:在抽彩機制中,每個合法區塊的生產都必須附有低於門檻的摘要,而摘要的計算需要參與者出力不斷地重上發條。
出錢:在表決機制中,抵押一定數量 EPC 的參與者才能獲選為領袖被生產提案,且若違反規則,參與者的押金將會被沒收。
出力即是工作證明(Proof of Work, PoW);出錢即是權益證明(Proof of Stake, PoS),抵抗女巫的機制稱為抗女巫機制(Sybil-control Mechanism)。
合約:進行條件式的交易
回顧一下本文開頭所提:區塊鏈技術可以用來打造去中心化的運算平台,它可以用以記錄任何資訊,不止餘額,例如一段合約(Contract)。合約就是指一段會依據不同條件而達成不同執行結果的語句。例如:
CheckAndPay
給定 A、B 兩個假名,若 A 的餘額大於/等於 30 EPC,則 A 支付 20 EPC 給 B ,否則 A 不支付任何 EPC。
這個合約就可以被記錄在帳本中:
Alice 100 EPCBob 0 EPCCharlie 0 EPCDavid 0 EPCEva 0 EPCCheckAndPay "給定 A、B 兩個假名,若 A 的餘額大於/等於 30 EPC,則 A 支付 20 EPC 給 B ,否則 A 不支付任何 EPC。"
之後 Alice 就可以發起像這樣的交易:
Tx 99
CheckAndPay, {[Alice], [Bob]}, ALICE
如此,若 Alice 的 EPC 餘額不足 30 EPC 則不會支付 Bob。
觸發合約的 Tx 99 ,它的執行過程比較煩瑣:執行 Tx 99 的參與者首先會從帳本中尋找 CheckAndPay 的合約內容,並從 Tx 99 中取出合約需要的輸入:A 與 B,接著參與者再解讀合約的語句,依照條件進行帳本的狀態轉換。其中,為了使參與者能解讀合約,合約需用所有參與者皆能看懂的語言書寫。
合約又稱智能合約(Smart Contract)。正式的區塊鏈使用虛擬機(Virtual Machine)來解讀與執行合約。事實上,智能合約能做的事情非常多,這使具有智能合約功能的分散式帳本得以成為去中心化的運算平台,例如以太坊(Ethereum)。
總結: 分散式帳本究竟是一個怎樣的系統?
如果以上環節皆運作順利,那麼便能成功只用紙筆便發行了專由學生使用的貨幣。最後再次強調一次:這是一個為了便於使初學者掌握核心觀念而極度簡化的例子。正式運行的區塊鏈,例如以太坊,其實際運作遠遠複雜得多。
還有一些比較進階的概念,雖然礙於篇幅未在此文章提及,但部分主題筆者曾撰文介紹:
可擴展性(Scalability):第二層方案(Layer 2)與分片(Sharding)
隱私(Privacy)與匿名(Anonymity)
共識機制的安全性(Safety)與活躍性(Liveness)
最後,如果日後朋友/家人問起「什麼是區塊鏈」時,我想你會知道如何解釋了:)
ELI5! 區塊鏈到底在幹嘛? was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有1部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 這個範例將舉出幾個型如 sin(x) / x 但更複雜的極限問題,但在處理上還是運用補項湊出 sin(x) / x 的型式來取得極限 【加入會員】 歡迎加入張旭老師頻道會員 付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利 👉 https://www.youtube.com/cha...
「雜湊函數範例」的推薦目錄:
- 關於雜湊函數範例 在 Taipei Ethereum Meetup Facebook 的最讚貼文
- 關於雜湊函數範例 在 數學老師張旭 Youtube 的最佳貼文
- 關於雜湊函數範例 在 [問題] 一個小題目- 看板C_and_CPP - 批踢踢實業坊 的評價
- 關於雜湊函數範例 在 【C++ 資料結構與演算法】雜湊表(hash table) - YouTube 的評價
- 關於雜湊函數範例 在 Hash Table:Intro(簡介) 的評價
- 關於雜湊函數範例 在 Introduction-to-cryptography/1. 有關雜湊.md at master - GitHub 的評價
- 關於雜湊函數範例 在 顧客檔案自訂廣告受眾- 行銷API - Facebook for Developers 的評價
雜湊函數範例 在 數學老師張旭 Youtube 的最佳貼文
【摘要】
這個範例將舉出幾個型如 sin(x) / x 但更複雜的極限問題,但在處理上還是運用補項湊出 sin(x) / x 的型式來取得極限
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【勘誤】
無,若有發現任何錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsumath/reviews
【習題】
重點十二:https://drive.google.com/file/d/1D8R-DA-7epAyFnVqNqPrR0Kgjiy14NKO/view?usp=sharing
偶數題講解影片:https://www.youtube.com/playlist?list=PLKJhYfqCgNXhWs16FYbGx5HTe2QdPwBqD
簡答:https://www.facebook.com/groups/changhsumath666.calculus/files
微積分討論群:https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商學院學生觀看
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
重點一:極限的直觀定義 (https://youtu.be/hZT2fOcxSJw)
重點二:極限的嚴格定義 (https://youtu.be/gCkhy0aODZk)
重點三:一些基本函數的極限 (上集) (https://youtu.be/qoIOFz1D_W4)
重點四:極限運算定理 (四則運算篇) (https://youtu.be/d6PzP8ApFgk)
重點五:極限運算定理 (合成篇) (https://youtu.be/h2X2yyGyWHQ)
重點六:去零因子求極限 (https://youtu.be/vqoc59G-gRI)
重點七:去絕對值求極限 (https://youtu.be/PYzasrBZWWA)
重點八:高斯符號求極限 (https://youtu.be/EXKQQS17k2Y)
重點九:含無窮符號之極限 (https://youtu.be/RhKkx7DO_kM)
重點十之一:老大比較法 (上):多項式分式 (https://youtu.be/Wr6rkCa1Neo)
重點十之二:老大比較法 (中):指數函數多項式 (https://youtu.be/FYGzcSw0U0s)
重點十之三:老大比較法 (下):叉叉接旨刺 log (https://youtu.be/YbvXCZmmff4)
重點十一:夾擠定理 (https://youtu.be/sTvtt4K85s0)
重點十二:lim_(x→0) sin(x) / x 專論 (https://youtu.be/sVohBWF-6ww)
└ 精選範例 12-1 👈 目前在這裡
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分前篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXikxrvbQAnPa_l3nFh5m9XK)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
【數列與級數】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjcv6ChH_w0Y0WRkdbiP6xY)
【多變數函數的微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhoWH8tB00L6d3tWMV1l_o8)
【向量微積分】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhVcuTj1IoCcYsRhJqoHN-y)
【附註】
1. 積分前篇和後篇自 2021 年 5 月起改成買張旭微積分上學期講義解鎖影片
2. 數列與級數以後的章節為下學期內容,為付費課程,購買後在張旭無限教室線上課程平台觀看
張旭微積分上學期講義購買頁面
👉 https://www.changhsumath.cc/calculusBook
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://www.changhsumath.cc/calculus2nd
【張旭無限教室線上課程平台】
2021 年年初,我建置了一個線上課程平台
除了放我的線上課程以外
也有其他與我合作的老師們的課程
👉 https://changhsumath.com
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
雜湊函數範例 在 Hash Table:Intro(簡介) 的推薦與評價
本篇文章便要介紹能夠在O(1)完成查詢的Hash Table(雜湊表)。 ... 關於第一點「Key不是非負整數」的缺陷,可以先利用一個「一對一函數(one-to-one function)」將Key對應 ... ... <看更多>
雜湊函數範例 在 [問題] 一個小題目- 看板C_and_CPP - 批踢踢實業坊 的推薦與評價
#include<iostream>
#include<fstream>
using namespace std ;
void main(){
ifstream data("b.txt") ;
char num[100] ;
int spilt ;
int total = 0 ;
int sum = 0 ;
char temp[100] ;
data.getline(num,100,'\n') ;
data >> spilt ;
cout << num << endl << spilt << endl ;
# for(int i=0;i<strlen(num);){
# for(int j=0;j<spilt;j++){
# temp[j] = num[i++] ;
# }
# total += atoi(temp) ;
}
cout << "Ans=" << total << endl ;
}
雜湊(hashing)是用來計算一個鍵值(key value)對應之索引(index)的方法,而「折疊法」
4
是雜湊函數的方法之一,假設有一個鍵值為5120969190600791,而折疊的長度為3,
折疊的計算過程如下,首先鍵值先依照折疊長度加以切割,由於鍵值有16 個數字,每3
個數字進行切割的話,可以切出6 段,如下所示:
512 096 919 060 079 1
接著這些數值進行加總就可以得到所需要的索引1667,如下所示:
512+096+919+060+079+1=1667
所以請撰寫一個程式從b.txt 中讀入兩行資料,第一行是鍵值的字串,第二行是折疊的
長度,接著輸出索引的結果。
範例輸入:
5120969190600791
3
範例輸出:
5120969190600791
3
Ans=1667
##我想問的是#那5行在做什麼
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.162.118.189
... <看更多>