【家族企業的治理,傳承與接班】
—
完全不同的領域,是朋友爸爸..
建議我買回來看看,腦中建構一下
讓自己有個觀念就是…😩
—
【排名詭計】
書大致上是運用,政治學,行為經濟學,
生物/社會學,和現今網路科學,
來讓讀者思考了解,在我們每天生活
所出現的數據排名,背後所隱藏
的主觀性,怎麼影響我們日常生活,
和對於事物的判斷。
—
【AI 2041】
書中是用故事敘述方式
帶出現有的科技,可能造就出
可能的未來狀況。
—
我是還蠻喜歡這本書的,
提到的有些面向…
是以前從沒有想到的。
—
雖然伊隆,馬斯克曾說過..
AI 人工智慧是…
人類文明面臨的最大危險,
—
但我是覺得人類+AI 是大於二的,
雖然我是樂觀派..就像書中..提到
人在世上不應庸庸碌碌,日復一日
做些重複性的工作,更不應讓我們後代
再繼續這個輪迴。
—
【行銷5.0】
書中一些案例,架構,嗯…
跟我這幾年看完的行銷書籍,
和這一年多,出的後疫情經濟,
讓我有點像在複習…
但本質上還是'稍微'推薦行銷新手
閱讀看一下這樣….
—
【領導者的數位轉型】
—
數位轉型,要先經歷數位化,
傳統紙張,簽帳,等等….
全轉變成資訊數位化。
—
有了數位化,再把原有營運流程,
結合數位科技,有了數碼化過程
才會所謂數位轉型的基本架構。
—
看過蠻多把數位轉型,
最初的數位化,說成是
整體數位轉型..閱讀本書
能避免掉這種基本認知錯誤,
—
數位轉型做的好,後來數位再造
遇到問題也就比較能抓到核心問題,
—
#新書推薦 #書籍推薦
#新書 #newbook #未來科技
#社會議題 #人工智慧 #行銷
#數據分析
同時也有1部Youtube影片,追蹤數超過149萬的網紅啾啾鞋,也在其Youtube影片中提到,LYREBIRD這個網站可以利用你提供的聲音資料,經過AI重新合成出屬於你的虛擬聲音,只要打字它就會用你的聲音念出來! https://lyrebird.ai/ 支持啾啾鞋▶https://goo.gl/JzXgfv 更多書籍推薦▶ http://bit.ly/2oXUa5C 現在就訂閱吧! ▶ h...
「ai書籍推薦」的推薦目錄:
- 關於ai書籍推薦 在 Facebook 的最讚貼文
- 關於ai書籍推薦 在 Facebook 的最佳貼文
- 關於ai書籍推薦 在 大學生 BIG Student Facebook 的最佳解答
- 關於ai書籍推薦 在 啾啾鞋 Youtube 的最佳解答
- 關於ai書籍推薦 在 Re: [心得] 自學AI資源分享- 看板DataScience - 批踢踢實業坊 的評價
- 關於ai書籍推薦 在 必讀!3本AI實作書籍#補根知識007 - YouTube 的評價
- 關於ai書籍推薦 在 緯育TibaMe - #敲碗已久的AI書單來了... - Facebook 的評價
- 關於ai書籍推薦 在 #請益人工智慧推薦書 - 軟體工程師板 | Dcard 的評價
- 關於ai書籍推薦 在 書籍推薦#過程商機:分享AI無法生成、對手難以複製的日常 的評價
ai書籍推薦 在 Facebook 的最佳貼文
【極端不確定性】
—
本質是本不錯思考決策書籍,
但書中一直提到,歐巴馬...,
肯塔基賽馬,脫歐,真的惱人。
—
【AI威脅】
裡面有一段,我還蠻認同,
21世紀的文盲,
不是不會讀書寫字的人,
而是不會學習,
不願摒棄已知重新學習的人,
—
但書籍後面,提到避免科技造成
更大的財富落差,可以提高社會福利,
無條件全民基本收入,另一個想法則是,
免費住宅,食物,交通,通訊,
但跟我想的差不多,書中也提到建議,
不容易達成,尤其政治層面,自己打臉?
—
書中其實有些面向,還蠻烏托邦跟左派,
好或不好,沒一個標準,但對我來說,
只要自己讓科技掌控自己生活越多,
越不了解它,長久來看是很危險的事。
就像坐在副駕駛座,你的駕駛蒙著眼開車。
—
【Aiot 數位轉型策略與實務】
是本工具書,從基本概念,科技運
還蠻實用的一本書籍,
到企劃書編寫大綱,都有提到like。
—
【行為上癮】
書中是說科技巨頭們是如何
在資本主義框架下讓我們逐漸
對於科技上癮,然後也在無形當中
把我們的意志對於事物選擇權,
慢慢拿走🥲。
—
#新書推薦 #書籍推薦
#新書 #newbook
#社會議題 #區塊鏈 #科技心理學
#未來科技 #人工智慧
ai書籍推薦 在 大學生 BIG Student Facebook 的最佳解答
#大學生談書籍 #閱讀書單FB粉專推薦 #書荒
【文學/商業/詩集/心理學書單…追蹤這7個閱讀粉專讓你不書荒!】
有時候想要找本新書來看,卻找不到對自己胃口的書怎麼辦🤔
這時候可以試試搜尋接下來所介紹的FB粉專們,
推薦了各式各樣的書單類型,
肯定能讓你找到自己喜歡的書🥳🥳
是哪幾個FB書單粉專呢?趕快來看看💁🏻♀️
「我平常臉書都會追蹤一些常常po書/書單的粉專,推薦幾個~
🔸1.JC趨勢財經觀點 JC 財經觀點
非常推薦,每天都會更新且內容豐富的粉專。
內容包含:推薦財經新書、分享財經新聞+解讀,還有earnings season(財報季)時常常分享各家財報公佈數據,附上簡短評論(…)他們新書推薦的超快!!
🔹2.(…)
🔸3.Initium Media端傳媒 Initium Media 端傳媒
它有個 #晚安小瑞 系列,會摘錄一些書籍/劇作/詩集裡面的句子,簡短一句但殺傷力超強,超級戳心臟(…)
🔹4.(…)、🔸5.(…)
🔹6.Back to basics Back to basics
這是我很崇拜的譯者洪慧芳女士的粉專,她翻譯作品非常多,且質量非常好!
像是《大賣空》、《老千騙局》、《挺身而進》都是非常暢銷的書,也剛好都是我很喜歡的書。
裡面推薦很多他翻譯的作品或是他覺得值得一看的作品,內容包含金融、科技、AI、心靈、商業策略、行為經濟、歷史人文...等(…)
🔸7.各出版社粉專 例:城邦讀書花園
要找書其實直接去看出版社粉專最快了XD
內容包羅萬象,而且會有粉專小編推一些活動(如:抽獎、促銷),粉專例如:城邦讀書花園、(…)」——#發霉的青春
#書 #書籍 #書單 #推薦 #分享 #書籍推薦 #文學 #商業書籍 #詩集 #看書
📍本文分享自 #書籍版
👉🏻全文看這裡:https://bigstudent.tw/M0dQd
ai書籍推薦 在 啾啾鞋 Youtube 的最佳解答
LYREBIRD這個網站可以利用你提供的聲音資料,經過AI重新合成出屬於你的虛擬聲音,只要打字它就會用你的聲音念出來!
https://lyrebird.ai/
支持啾啾鞋▶https://goo.gl/JzXgfv 更多書籍推薦▶ http://bit.ly/2oXUa5C 現在就訂閱吧! ▶ http://bit.ly/2ehD36u
▼啾啾鞋的人氣影片▼
牛排的血水根本不是血!
http://bit.ly/2lA5oND
路上撿到隨身碟,你會...?
http://bit.ly/2ytI7E5
明明沒感冒,為什麼我只有一邊的鼻孔在呼吸?
http://bit.ly/2xZN1E9
為什麼耳機總是會自己打結?
http://bit.ly/2ia1UNf
還好我也退了! 當兵心得文
http://bit.ly/2AjxbWI
背景音樂Background Music:
epidemicsound.com
粉絲專頁:https://www.facebook.com/chuchushoeTW
Instagram:http://instagram.com/chuchushoetw
Twitter:https://twitter.com/chuchushoeTW
Google+:https://plus.google.com/+chuchushoeTW
ai書籍推薦 在 必讀!3本AI實作書籍#補根知識007 - YouTube 的推薦與評價
AI #自學 AI # AI書 #補根課程這集補根知識為大家介紹的是3本必讀的 AI 實作 書籍 ... 5本改变人生的好书| 中英文 书籍推荐 | 好 书推荐 | 自我提升/手帐/情商/ ... ... <看更多>
ai書籍推薦 在 緯育TibaMe - #敲碗已久的AI書單來了... - Facebook 的推薦與評價
敲碗已久的AI書單來了小編隨手一拍的照片引來網友們的熱烈回響,總監Frank即使會議滿滿,還是把這篇文章生出來了! 精選九本書,是總監看過才推薦,從程式語言、機器 ... ... <看更多>
ai書籍推薦 在 Re: [心得] 自學AI資源分享- 看板DataScience - 批踢踢實業坊 的推薦與評價
感謝原 PO 的分享,我也來分享一下我自己的學習清單
==== 前言 ====
去年因緣際會知道了有關大數據、資料科學、機器學習這些領域
本來考慮要去參加資策會的課程,但自己要在家帶小孩
如果參加課程,小孩要找保母,整個機會成本太高,因此決定自學先
網路課程現在幾乎是隨手可得,想要自學的人根本不怕沒有教材可以學習,但是五花八門
的課程中,怎麼去選擇就是一個很重要的問題了。
我自己是一個門外漢,因此在選擇課程以及安排上面花了蠻多時間,以下大多是我看過或
是大概瀏覽過覺得不錯的課程,就推薦給想要自學又不知道怎麼開始的朋友們吧~
==== 概論 ====
由於自己雖為國立大學數學系畢業,但畢業非常多年,加上自己也非科班出身,因此想要
先了解整個領域的範疇、概要,之後再開始針對各個科目分進合擊。
PS : 初期我自己都以大數據為出發點,所以上的課都是大數據概論取向,但再其中其實
對於資料科學、AI、機器學習都會講到。
1. [ Coursera ] 大數據分析:商業應用與策略管理 (Big Data Analytics: Business
Applications and Strategic Decisions)
這門課是台大與玉山銀行合作開的線上課程,與其說是課程,我認為比較偏向講座,在這
過程中可以對大數據、機器學習等在商業上的應用。這堂課可當作補充資料來上,會有一
些實務應用上的概念,當然,如果沒時間也不一定非得要上。
2. [ Coursera ] Big Data Specialization
University of California, San Diego 開設的這們課程,我個人還蠻推薦的,尤其是對
跨領域、無先備知識的學習者來說,可以在這一系列課程中很快速地對整個領域有蠻深入
的理解。
3. [ Book ] 精通 Python
4. [ Book ] Python 資料科學學習手冊
這兩本都是 O’REILLY 的經典書籍,我必須坦白說我沒有完整的看完,精通 Python 我
針對資料科學的部分有完整看過,然後做習題,但裡面很多章節稍微跟資料課學無關的我
幾乎都暫先跳過,而資料科學學習手冊我是都拿來當工具書翻閱。( 所以我 coding 能力
還是一樣很差XDDDDD )
==== Python ====
第二階段我開始以 Python 為主進行學習,因為我自己 coding 能力幾乎是 0,這個部分
必然要作為初期學習的重點項目。另外,雖然說這是第二階段,但其實這部分跟上述的概
論課程我幾乎都是同時期一起上課。( 不過我坦承到現在我自己的 coding能力還是很差XDD )
1. [ Coursera ] Python for Everybody Specialization
這門是 University of Michigan 所開設的 Python 專項課程,完全從 0 基礎開始上課
,上完以後可以可以進行一些初階的程式作業我想是沒有問題的,這堂課並沒有太多針對
資料科學的部分,主要是以各領域都會用到的基礎工具為主。Charles Russell 的上課方
式我超喜歡,喜歡友去上課方式的人我想也會跟我一樣喜歡這門課。
2. [ Coursera ] Applied Data Science with Python Specialization
一樣是 University of Michigan 開設的,這專項課程我作為上門課程的接續課程。前面
幾堂會針對 python 在資料科學中會用到的模組、方法進行概略式的瀏覽,後面則會針對
視覺化、機器學習等領域做較為深入的介紹。整個課程較上一門來說困難度增加不少,因
為我自己有做手寫筆記的習慣,這門課的許多東西在我現在 coding 遇到問題時都還能翻
閱筆記作為工具書使用,我覺得受益不少。
3. [ Coursera ] Fundamentals of computing
Rice University 所開設的課程,之前應該也是在論壇看見推薦的,但課程難度較高,目
前我也是暫時先擱置還未進行這課程的學習。
===== Machine Learning =====
1. [ YouTube ] 機器學習基石 & 技法
(Machine Learning Foundations and Techniques)
台大林軒田教授所開設的機器學習課程,在 Coursera 與 YouTube 軍可以免費觀看課程
內容。這門課主要以基礎的機器學習演算法為主,但雖然說世紀處演算法,但內容包含的
數學比重較重,啃下來的確會有點困難,但整個課程的安排的確非常流暢,老師的講述也
算是蠻清楚。而且教授對於課程教學十分用心,如果在 YouTube 或是 Coursera 上面提
問,教授 (或助教) 都會盡可能地回覆。( 即使課程已經是兩三年前的課程了,現在也都
會看到教授的回覆,非常用心。 )
2. [ YouTube ] Machine Learning — 李宏毅
台大李宏毅所開設的機器學習課程,一直以來都是台灣及中國學習者極力推薦的中文課程
之一。課程內容與時俱進,每一年都會將最新的機器學習、深度學習的演算法、模型加入
到課程內,讓學習者能夠跟上整個領域的發展。數學的比重比林軒田教授的課程低,而且
多了許多有趣的範例及講述,上課起來輕鬆不少。然而,影片內容我個人覺得安排較為紊
亂,可能是每一年的課程進度剪接而成,在某一些地方的銜接度較差,這是上課時稍微讓
人困惑的地方。不過瑕不掩瑜,這門課程我認為還是非常值得花時間上的。
[ 補充 ] 最近中國一些人將李宏毅的課程整理成一個 github 專案,完全複刻課程內容
,包含了課程中的所有 demo 以及課程作業內容,非常值得大家在上課的同時做參考使用
。
[ 補充 ] 李宏毅另外有一門課程 " Machine Learning and having it deep and
structured ",會更深入講解機器學習的演算法跟架構,這也是後續上完 Machine
Learning 後可以深入補充的課程。
3. [ Coursera ] Machine Learning — Andrew Ng
由 Stanford University 的吳恩達教授所開設的課程,這已經是全世界公認的經典了,
不過已經花了大半年上完前面兩門課程的我,可能要稍作休息,待日後有機會再來進行這
門課程的學習。
4. [ YouTube ] Large-Scale Machine Learning
清大吳尚鴻所開設的課程 (https://www.cs.nthu.edu.tw/~shwu/courses/ml/),忘了在哪
看見推薦的,我有上去大概看了一下,就學習論的部分我覺得講解的蠻清楚,就也是有空
可以再回頭來看看。
===== Mathematics =====
整個 Machine Learning 所涵蓋的數學領域其實是很廣的,有一些甚至不是數學系四年會
碰觸到的部分,而且某些部分甚至都是數學系、所一整學年的課程,我認為不用太糾結每
一個數學細節,找到一個可以說服自己的方式就好。( 當然,如果你真的想走演算法這條
路,要求就要再提高ㄧ些 )。如果有時間我會建議可以把機率統計以及線性代數的部分上
過一次(我大學機率統計實在學得慘不忍睹),我認為這兩個領域如果可以上手,就會輕鬆
許多。
1. [ 清大開放式課程 ] 機率論
2. [ 清大開放式課程 ] 統計學
3. [ 清大開放式課程 ] 數理統計
這三們都是清大鄭少為老師所開的課,基本上他的機統普遍受到許多人的推薦,我自己有
看過前面幾堂的機率論,我認為條理清楚,講義也很詳細,這是我真的很想找時間上的課
程。
4. 線性代數
這個部份我目前暫時沒有重新上課的打算,大學教授上的非常好,我的筆記也都還留著,
就可以來回對照著參考,如果有推薦的課程也可以讓我知道,一起推薦給所有人參考看看
。
===== 補充資料 =====
這裡推薦幾個我認為很有幫助的學習途徑,有些是課程,有些並不算是。但我認為都可以
在上面這些基礎課程以外作為增強實力的補充教材。(備註 : 這裡我選出來的都是比較廣
泛性的平台,但 Medium 或是ㄧ些個人部落格也有很多非常棒的補充資料可以看,但這樣
的資料多且雜,我就暫時沒收在下列推薦名單中。)
1. AI 研習社 ( https://ai.yanxishe.com/ )
不得不說,中國在這領域的發展真的比台灣快而且豐富,當我在學習過程中找尋中文資料
時,九成都是從中國的論壇或是部落格中找到,台灣在這方面的分享上面的確比較少。
AI 研習社我會建議大家可以去他的線上課程看,裡面有幾個大師級的課程 ( 重點是有簡
中字幕XD ),例如 Hinton 的課程我就會想要找時間來看一下。裡面還有一些資料、論文
整理的部分,大家也是可以上去晃晃看。
PS:它有一門「機器學習必修之數學基礎」系列課程其實我還蠻有興趣的,但是學費不便
宜就…
2. CSDN博客 ( https://blog.csdn.net/ )
不管閱讀論文還是課程上面有疑問,絕對可以針對同一件事情再上面找到非常多樣化的解
釋。上面我曾經說過,很多時候不要拘泥,找到一個能說服自己的方式就好,通常我都會
在許多不同的解釋當中選擇一個我比較理解且能接受的方式作為我對這件事情的理解。
3. 知乎
這有點像是中國版的奇摩知識+ (?),針對一個問題也可以看到底下有許多不同角度的切
入,我覺得這樣的學習其實蠻不錯的。當我在找資料的時候,只要是CSDN跟知乎我都會點
進去看一下,許多時候都會有不錯的收穫。
4. reddit/MachineLearing ( https://www.reddit.com/r/MachineLearning/ )
reddit 的 Machine Learning 版裡面有許多的神人,還潛伏了許多論文的作者在裡面,
時不時會有一些很新的論文發表、成果發表還有許多有趣的討論在裡面,我覺得可以收藏
起來看。
5. 微博公眾號
好,我知道這部分爭議很大,如果真的很介意的可以跳過這一 part。
我完全沒有在用微博,但為了ㄧ些公眾號的訂閱我才開始使用。許多公眾號會把很新的
AI 新知、或是一些知識整理放出來,雖然品質參差不齊,但也不得不說有時候真的能撿
到一些不錯的好文章。另外,覺得閱讀reddit 全英文資料很吃力的,有時候大概在
reddit 上面發表一兩天之後公眾號就有簡體中文的說明出來,我覺得有時候偷吃步其實
也是蠻可以的啦XDDDDD。還有一個公眾號會每天發送各種領域最新的論文內容出來,如果
閱讀論文速度很快的,可以從這樣的公眾號中拿到很多最新的論文資訊。
=======END=======
以上是我自己的一些學習資訊,也提供給大家參考看看
當然還有很多非科班出身必須要修的 例如資料結構跟演算法等等
我目前還沒有什麼概念,如果有人有推薦課程也希望不吝分享讓我知道一下
--
聽眾散去了,希爾伯特卻仍留在講台上,
他等著看自己是否已經運用有利的例子,優越的論證,
以及具誘惑力的23個問題,
塑造他期盼見到的未來.....
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.45.98.201 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/DataScience/M.1565639939.A.F2F.html
... <看更多>