AI 如何為公司創造更多價值?專家:2 個缺陷,要先由人類來修補
2021/05/13
採訪‧撰文
盧廷羲
張凱崴
美國人工智慧國家安全委員會(NSCAI)今年 4 月建議,國防部每年應至少分配 3.4% 的預算投入科技領域,並提撥 80 億美元研發 AI。企業方面,微軟(Microsoft)4 月宣布,將以 197 億美元收購語音辨識開發商紐安斯通訊(Nuance Communications);後者是雲端與 AI 軟體的先驅。
從企業到國家,都愈來愈重視人工智慧,知道要想辦法運用 AI 創造更好的生活。不過,目前 AI 發展到底處於什麼階段?我們又該如何應用?
美國加州大學洛杉磯分校(UCLA)電腦科學系助理教授張凱崴形容,目前人工智慧技術已經可以幫助人類完成很多事,像是疫情來襲,電腦可以從大數據中篩選條件,自動搜尋、判讀潛在病例,幫助醫生大幅減少檢查時間,但 AI 也並非萬能,要先認知它的局限。他研究如何讓 AI 更符合人性,獲得 2021 年的史隆研究獎(Sloan Research Fellowships)。
AI 局限1. 資料寬廣度不足時,就會複製人類偏見
張凱崴認為,電腦在學習的時候,是依賴「彙整數據資料」來判斷,並沒有真正思考,如果資料來源太狹隘、不夠多元,資料寬廣度不足,電腦判斷就會出現偏差,「你跟電腦講清楚 input(輸入)、output(輸出),提供足夠的數據資料,它可以對應、學得很好,但還有很多面向 AI 做不到。」
舉例來說,亞馬遜(Amazon)2014 年推出智慧音箱(Amazon Echo),使用者口頭下指令給語音助理 Alexa 就能放音樂、查資訊。然而,有些人口音較罕見,或是用字較特殊,智慧音箱的資料庫沒有「不同口音」「不同用詞」的檔案,就可能失靈,這是當前 AI 的其中一大問題。
張凱崴進一步解釋,AI 另一項挑戰是,它無法清楚分辨「不曾出現」與「不能出現」(無法出現)之間的區別,只是從資料統計出要學的東西,無法像人類一樣進行邏輯思辨。
AI 的運作方式,第一步是輸入資料,第二步是分析,但這過程容易出現偏見。例如電腦在理解「總統」這個字,會去看四周有什麼字詞,來學習總統這個詞,由於許多總統都是男性,電腦就會「覺得」總統是男性。
這也是為什麼,如果讓 AI 學習,在它的認知裡,女性「不可能」當美國總統(因為沒有資料紀錄)。「你可以跟人類說,任何職業、性別都是平等的,但對電腦來講,這很困難,」張凱崴說明,一旦資料的寬廣度受限,電腦就容易產生偏見。
就像在自然語言處理(Natural Language Processing,讓電腦把輸入的語言變成有意義的符號)領域,張凱崴說明,AI需要知道代名詞指的是「哪個名詞」,才能運算下去。但如果資料受限,使用男性的「他」,電腦可能判斷這個代名詞是指總統、總理、執行長;但換成女性的「她」,由於數據不足,電腦就會混亂,出現系統性誤差。
他再舉一例,美國人工智慧研究組織 OpenAI 提出「生成式預先訓練」系統(GPT,Generative Pre-training),推出到 GPT3 版本,屬於書寫類 AI,電腦能夠揣測人們說完上一句話,下一句可能會講的句子,自動完成後半段。
好比有人上一句寫下「我正在和教授聊天」,系統可能推導出「我們在研究室討論學術問題」,因為電腦藉由蒐集來的語料資料中判讀出「教授」和「學術」具高度相關。但研究也顯示,GPT2(前一代版本)系統也從資料中學習到許多偏見,像是如果句子前半談論白人男性,系統傾向產生正面評價;如果句子前半是黑人女性,系統竟會產生負面句子。對企業來說,許多組織接觸 AI,想讓它們取代部分工作,首先需要留意資料的廣度、多元性,才能減少電腦犯錯的機會。
AI 局限2. 即便條件相同,也無法每次都做出正確判斷
「其實,現在的 AI 就像一台原型飛機,還缺乏穩定性。」張凱崴說,現行的 AI 就好比萊特兄弟(Wright brothers)剛發明飛機,看似可以做很多有趣的事,但「可以飛」跟「飛得很好」,有一大段落差。
紐西蘭的簽證系統曾鬧出笑話。人們上傳簽證照片,AI 掃描後,確認是不是本人,但當時系統沒有估算到某些亞洲人眼睛比較小,一名亞裔男子被判定「沒有張開眼睛」,因此照片無效。
張凱崴說,在這個例子中,凸顯出 AI 的穩定性不足,「系統沒有考慮到不同人種的差異,很死板地認為你眼睛沒張開。」所謂的缺乏穩定性,指的是 AI 沒辦法在相同條件下,每次都做出正確決策,這也是使用 AI 時,須留意的第二個挑戰。
他再舉例,許多模型可以準確分析,一則影評對電影的評價是正面或負面。然而研究顯示,有時只要將影評中一些字換成同義詞,例如把電影(movie)換成影片(film),或改寫句子,即使意思並未改變,系統卻把原本判斷為正面的影評標註成負面。這顯示AI系統還未真正了解語言的含義。
在設計這些程式時,人們必須注意到 AI 可能有局限,設定的資料範圍要更完整,考慮這些因素,就能減少偏見、落差,進而加強穩定性。
餵指令給 AI 要多元化,嘗試「換句話說」、刻意混淆
經理人雖然不一定具備 AI 方面的專業知識,但只要掌握觀念,再透過 AI 領域專才協助,也能優化系統。張凱崴指出,最直接的方法是,設計 AI 模型時,要把來源群組不同的資料分門別類測試,在測試階段讓群體多元化,並確保不同特色的使用者,用起來都沒有問題。
舉例來說,一套 A 系統擁有來自各地的使用者,如果設計者是台北人,設計系統的思維容易以台北生活為主,很可能因為當地習慣不同,導致花蓮使用者操作不順。
另一個方法,則是用不同的「語意」,去測試 AI 有沒有徹底學會一個概念。例如,有一套餐廳評鑑的 AI 系統,只要蒐集、整理使用者意見,就能判斷每個顧客對於餐廳的評比是高分或低分。那麼要如何確認這套系統的穩定性?張凱崴建議,可以利用「抽換詞面」的方法。
比如,把詞彙換成同義字,再看 AI 是否能運算出相同結果,「你可能會發現,原本評比結果是食物很美味,但如果美味換成比較困難的詞,AI 就會分不出這則評比是好是壞。」因此在訓練模型時,可以將詞彙隨機抽換成同義詞,增加 AI 的詞彙量。
第三種方式更進階:改變句型、重寫句子。張凱崴指出,同樣一句話,如果換成不同說法,電腦可能判讀錯誤,將「因為發生 A 事件,所以導致 B 事件」,改寫成「B 事件發生了,是因為 A 事件的緣故」,明明兩句話意思一樣,但 AI 很可能因為穩定性不足,搞混兩者的差別。如果要鞏固 AI 的穩定性,可以使用自動改寫的方式,增加資料的多樣性。
張凱崴表示,經過這些測試,讓 AI 接受更多元化的訓練,得到更廣的學習範圍,往後碰到同義詞、相似資訊,才能有效判讀。
張凱崴總結,AI 還在快速發展,或許可以創造更多工作機會、新的職位,但現行階段,它只是輔助角色。AI 並非魔術盒子,使用它就一定有更好結果,人們還是要保持高度耐心,先認識它的缺陷,才能在技術更迭下,發揮出最好的結果。
張凱崴
台灣大學資訊工程系碩士、美國伊利諾大學(UIUC)電腦科學博士。美國加州大學洛杉磯分校(UCLA)電腦科學系助理教授,研究領域包括人工智慧、機器學習、自然語言處理。2021 年獲得史隆研究獎(Sloan Research Fellowship),研究團隊開發的運算方法,使人類語言處理的程序更有效率、更多元,同時兼具公平性。
附圖:優化AI系統的3方法
資料來源:https://www.managertoday.com.tw/articles/view/62902?fbclid=IwAR2jI1bhg1anqct0AZZR_3LKKJqIsvG0wz2whSN8iniROZApHt-_qpD7dis
同時也有5部Youtube影片,追蹤數超過5,870的網紅珊蒂微AI,也在其Youtube影片中提到,很難得機會在台灣捕獲李孟這位旅日的資料科學家,也很高興可以訪問到他! 李孟在日本四年的工作時間當中,歷練過「軟體工程師」、「資料科學家」以及「機器學習工程師」的職務,為什麼會有這一路以來的自覺與自學歷程?我們都一併在這次專訪當中聊到了!同時還加碼聊了「在日本的工作與生活環境」,提供給想去日本生活的朋...
人工智慧 大數據 差別 在 天下文化 Facebook 的最讚貼文
【「全通路轉型」的六項修練】
新冠肺炎肆虐全球後,#數位轉型 可說是僅次於 #遠距工作 的熱門關鍵字。很多企業意識到數位轉型的重要性,但也因為急就章的關係,往往並沒有頭緒和章法可言。
不只數位轉型,更要採用「以顧客為中心」的 #全通路轉型,融合線上與線下通路的服務,得以讓消費者獲得無差別的服務。在朝全通路轉型的過程中,作者認為企業界通常會面臨到六項修練。
——————————
➤ 全通路行銷X人工智慧領域
✅《AI行銷學》:https://bookzone.pros.is/3evj7r
*-。-。-。-。-。-。-。-。-。-。-。-*
㊙ 4/20—6/08 博客來 X 天下文化暢銷展 #66折起
ℹ 買參展書滿699元送週誌筆記本
ℹ 滿1299元送個性頸枕(不累送/數量有限,送完為止)
👉 書展傳送門:https://bookzone.pros.is/3e65u7
人工智慧 大數據 差別 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
車用電子熱翻天,全自駕系統的基礎 ADAS 到底是什麼?
作者 黃 敬哲 | 發布日期 2021 年 01 月 25 日 14:43 |
先進駕駛輔助系統(ADAS)其實並不等同於自動駕駛,其所涉及的範圍及產品零組件,可能也與許多人想像中的不太一樣。
早在自駕系統火熱之前,ADAS 其實已發展許久,1995 年,日本三菱就推出了停車距離控制系統(PDC),到了 2000 年,豐田就實現了基於毫米波雷達的適應性巡航系統(ACC ),可以說是現今自駕系統的前身。毫米波雷達性能可能不如光達,但具有體積小、重量輕、且不易受天候因素影響和探測距離長等優點,且造價相對合理,如今都還是主流。
因此除了 ACC 外,其實如自動煞車系統、盲點偵測系統等都廣泛採用毫米波雷達,基本上是以不同的頻率來區分其應用,目前是往 79GHz 等較高頻率發展,尤其是為了因應自駕系統的發展。 ADAS 基本上指的是安裝在車上的各種感測器,來令駕駛人掌握整車及外部環境因素,如車道偏離警示、防撞警示、夜視及適路性車燈等都可稱為 ADAS。
ADAS 作為一種混合技術系統,基本上可分為三大部份:感測器、處理器與致動器。由感測器捕捉外界的訊號,除了毫米波雷達及光達此類外,也包括熱能、壓力等監測器。透過傳回這些資料給處理器,並形成足以讓駕駛人認知的資訊,以避免危險路況。甚至為因應人類反應之不及,也可以直接啟動致動器,達成減速、緊急煞車等保護駕駛人的功能。
差別在哪?
理論上,性能優秀的 ADAS 大概就能等同於 3 級自駕系統,亦即有人駕駛下的條件自動,例如自動停車等,就是結合了複數 ADAS,這也是目前的主流,基本上要實現等級 4 高度自動,及等級 5 全自動駕駛,還有一段技術距離。事實上,ADAS 與自駕系統還是有不少差異,就單純論技術來講,最大的不同在於處理器。
自駕系統需要的處理晶片更加先進,並應用到人工智慧及大數據分析等技術,對於資訊的處理量與較為單純的 ADAS 不是同一個等級,雖然從 ADAS 到自動駕駛的確是一個漸進式的過程,但最大的分隔點還在於是輔助駕駛人,還是由系統來主導駕駛行為,可以說在等級 3 自駕之前基本上都只是 ADAS 而已。
自駕系統的基礎
不過要實現自動駕駛,還是必須要先建立完善的 ADAS 技術,各種微機電系統的配合,才能成就自駕的功能。從胎壓偵測、行人辨識、電子煞車,甚至是動力分配如下坡控制等系統,都是能夠補足駕駛人車技不足的關鍵,最終向外延伸到車道保持、ACC 及車聯網等技術,最終建構出理想的智慧交通。
當然各國政府也對此有著相當繁複的規定,避免品質不佳的裝置被民眾使用,反而造成更多的交通危害,且相對 ADAS,自駕系統衍伸的法規問題更加複雜,就算發展到 Level 5,要爭取到政府法規的認同,也並不容易,牽扯到如車禍責任歸屬等根本問題。
此前就有法院判決特斯拉不能以自動駕駛來進行宣傳,避免車主對車輛性能有所誤解。實際上,現今商業化的所謂「自駕」系統多半也都還只是 Lv 2~3 等級而已,基本上都還只能算是 ADAS 的範疇。
資料來源:https://technews.tw/2021/01/25/automotive-electronics-are-turning-the-tide-what-is-the-basis-of-self-driving-system-adas/
人工智慧 大數據 差別 在 珊蒂微AI Youtube 的最讚貼文
很難得機會在台灣捕獲李孟這位旅日的資料科學家,也很高興可以訪問到他!
李孟在日本四年的工作時間當中,歷練過「軟體工程師」、「資料科學家」以及「機器學習工程師」的職務,為什麼會有這一路以來的自覺與自學歷程?我們都一併在這次專訪當中聊到了!同時還加碼聊了「在日本的工作與生活環境」,提供給想去日本生活的朋友參考呦~
👉在這次專訪中,我們暢聊了:
1. 李孟是如何從軟體工程師的身份開始自學「資料科學」?
2. 資料科學家 / 機器學習工程師工作內容上的差異?
3. 李孟比較喜歡當資料科學家、還是機器學習工程師呢?Why?
4. 覺得人們除了積極自學之外,還應該用什麼心態來應對AI帶來的衝擊?
5. 加碼閒聊「在日本的工作環境與生活環境」,提供給想去日本生活的朋友參考呦!
👉李孟釋出他在台大的演講簡報,鉅細靡遺地分享他成為一位資料科學家的歷程,內容相當精彩,製作也很精美耶!https://www.facebook.com/LeeMengTaiwan/posts/10220691442829365
👉李孟的超高含金量部落格,分享各種他在資料科學與機器學習上的應用經驗!https://leemeng.tw/
#他是資料科學家也是機器學習工程師 #自學資料科學與機器學習 #李孟
人工智慧 大數據 差別 在 珊蒂微AI Youtube 的最佳貼文
這支影片跟你聊#4|如何評價自己的人生決策與人生觀?|珊蒂微AI|ft. 台大資管系 孔令傑 老師|專訪第三集-4
===============================
去年邀請到優秀的台大資管系的小傑老師一起合作拍攝專訪影片,當時就已經預計影片會分成三集釋出。只是...只是第三集的「回覆問題」 這一part 因故一直被我拖延著沒完成剪輯!
但是其實第三集是非常值得一看的,因為小傑老師總共回答了四個問題,我認為每一題都解答了很多人心中對於「資管定位? 人工智慧與資管關聯? 賽局理論與人工智慧關聯?」的疑問 (尤其是那些對未來選系迷茫的學子!)
再加上有網友在前兩集影片下方留言敲碗第三集,因此我收起了我的拖延病,奮起把第三集剪完了!
總之,好事多磨,第三集的四個問題回覆的影片將依序釋出在FB與YT呦!
💟問題一:人工智慧 / 賽局理論 / 大數據」三者到底有什麼關聯性?👉https://youtu.be/qzjIf-iDYNY
💟問題二:資管作為「管理」與「科技」的橋樑,能創造出哪些跟資工 / 資管 / 工管與眾不同的價值? 👉https://youtu.be/WHaVRdWu1Xw
💟問題三:若有同學是以學人工智慧為前提來選系,在 資工 / 資管 / 企管 三系之間,老師會如何給予建議?👉https://youtu.be/N37TaXG_wko
💟問題四:當初拿到PHD之後就回台灣教書背後原因?以及你怎麼評價自己的ㄖ決策風格?👉https://youtu.be/ZPHh9fyY0ko
#學AI靠選系?
#人工智慧是跨領域的學科
#台大資管系孔令傑
👉孔令傑老師的YouTube頻道:https://www.youtube.com/channel/UCUOO6-Vu9wjZI9SW5jgmNTQ
👉孔令傑老師的部落格:http://www.im.ntu.edu.tw/~lckung/?fbclid=IwAR2weTFa7_WKfqUDYrPeQEV2tI7cA-Q9DzEUx6RpobfFjJALLSXCbCR3ZQo
#大學科系
#資管
#資工
#台大
#如何選系
人工智慧 大數據 差別 在 珊蒂微AI Youtube 的精選貼文
這支影片要跟你聊聊|如何選系才能學到人工智慧? 我該選:資工/企管/工管/還是資管??
===============================
去年邀請到優秀的台大資管系的小傑老師一起合作拍攝專訪影片,當時就已經預計影片會分成三集釋出。只是...只是第三集的「回覆問題」 這一part 因故一直被我拖延著沒完成剪輯!
但是其實第三集是非常值得一看的,因為小傑老師總共回答了四個問題,我認為每一題都解答了很多人心中對於「資管定位? 人工智慧與資管關聯? 賽局理論與人工智慧關聯?」的疑問 (尤其是那些對未來選系迷茫的學子!)
再加上有網友在前兩集影片下方留言敲碗第三集,因此我收起了我的拖延病,奮起把第三集剪完了!
總之,好事多磨,第三集的四個問題回覆的影片將依序釋出在FB與YT呦!
💟問題一:人工智慧 / 賽局理論 / 大數據」三者到底有什麼關聯性?👉https://youtu.be/qzjIf-iDYNY
💟問題二:資管作為「管理」與「科技」的橋樑,能創造出哪些跟資工 / 資管 / 工管與眾不同的價值? 👉https://youtu.be/WHaVRdWu1Xw
💟問題三:若有同學是以學人工智慧為前提來選系,在 資工 / 資管 / 企管 三系之間,老師會如何給予建議?👉https://youtu.be/N37TaXG_wko
💟問題四:當初拿到PHD之後就回台灣教書背後原因?以及你怎麼評價自己的ㄖ決策風格?👉https://youtu.be/ZPHh9fyY0ko
#學AI靠選系?
#人工智慧是跨領域的學科
#台大資管系孔令傑
👉孔令傑老師的YouTube頻道:https://www.youtube.com/channel/UCUOO6-Vu9wjZI9SW5jgmNTQ
👉孔令傑老師的部落格:http://www.im.ntu.edu.tw/~lckung/?fbclid=IwAR2weTFa7_WKfqUDYrPeQEV2tI7cA-Q9DzEUx6RpobfFjJALLSXCbCR3ZQo
#大學科系
#資管
#資工
#台大
#如何選系
人工智慧 大數據 差別 在 大數據、AI、機器人,有什麼血緣關係? - Cheers快樂工作人雜誌 的相關結果
大數據 、AI(人工智慧)、機器人、演算法、深度學習(Deep Learning)、物聯網、感測器……,這些名詞似乎每天都會看到或聽到,當人們還搞不清楚是什麼時,媒體已不斷報導 ... ... <看更多>
人工智慧 大數據 差別 在 先懂我再用我!淺談大數據與人工智慧服務|老闆學校講座 的相關結果
AI 人工智慧等於機器人? 中華民國人工智慧學會秘書長洪智傑。 每次提到人工智慧,我們總是會很容易 ... ... <看更多>
人工智慧 大數據 差別 在 解密!大數據(Big Data) 與AI 的依存關係 的相關結果
自從1990年代起,大數據(Big Data) 的概念開始經常被人們提及,這個概念在之後的二十年間於各 ... 本文將帶您理解大數據本身與其和AI 人工智慧間的關聯。 ... <看更多>